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Abstract

The Linear Parameter-Varying (LPV) paradigm represents a nat-
ural extension of the classical Linear Time-Invariant (LTI) frame-
work. By virtue of the so-called scheduling signal, LPV models
can accurately describe the behavior of a large class of time-
varying and nonlinear dynamical systems, while preserving
the linearity between input and output signals. Thus, LPV
models are of great practical significance for modeling and
control of many industrial systems, as the simplicity of the
LTI theory is retained. This thesis is concerned with data-
driven modeling of LPV systems, addressing some of the
well-known issues pertaining to LPV model identification.
In particular, the main research questions addressed in this
contribution include selection of the model structure, dealing
with noisy measurements of the scheduling signal, identifi-
cation of the plant model from closed-loop data, and iden-
tification of linear fractional representations of LPV models
which are especially suitable for controller synthesis. The
proposed methodologies mainly fall under the framework of
parametric and non-parametric LPV identification using ma-
chine learning techniques and provide a set of tools for auto-
mated selection of LPV modeling parameters. Furthermore,
as an alternative to the conventional parametric and non-
parametric approaches, a novel algorithm based on mixed-
integer programming is devised for identifying LPV models
through piecewise affine regression. The framework of this
algorithm is applied to the problem of energy disaggregation
with a real-world benchmark dataset.

xvi



Chapter 1

Introduction

In many engineering applications, an accurate mathematical description
of the actual physical process is required for analysis and control. The
behavior of the system of interest can be modeled from the first principle
laws of physics, chemistry, etc. Often, a detailed knowledge of the un-
derlying system is essential to derive a mathematical model from these
laws. However, many physical phenomena have complex system dy-
namics and it is very hard to model them using the first principle laws.
As an alternative, a System Identification approach can be used to describe
the behavior of the system.

System identification aims at building mathematical models of dy-
namical systems from experimental data. In order to obtain an accurate
model of the system, identification procedure consists of multiple design
steps which are referred to as an identification cycle. A typical identifica-
tion cycle consists of the following important steps which are summa-
rized in Table 1.

In the first step, an experiment is performed by exciting the sys-
tem under consideration with input signals and observing its output re-
sponse. A record of input and output signals over a time interval, termed
as training dataset, is used for estimating the models. The experiment can
be performed either in an open-loop or in a closed-loop setting where
the system is in a feedback connection with a controller. The second
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Table 1: The identification cycle

Step 1. Collection of data from the system.

Step 2. Selection of model structure.

Step 3. Determination of the identification criterion.

Step 4. Estimation of models which optimize the chosen criterion.

Step 5. Validation of the estimated model on a fresh dataset.

step consists of choosing an appropriate model structure which can ad-
equately describe the recorded input-output dataset. The type of model
structures can range from simple static models to complex nonlinear and
time-varying dynamical models. Once the model structure is selected,
a criterion is chosen in the third step which can quantify the quality of
the identified model. This criterion tells how close the model output is
to the recorded output measurements. For example, least-squares crite-
rion quantifies the fit of the estimated model output to the actual output
via square of the euclidean norm of the residuals. The next step is to
develop a statistical method to estimate the parameters of the selected
model class which are optimal with respect to the identification criterion
chosen in the third step. In the final step of the identification cycle, the
quality of the estimated model is assessed using a fresh validation dataset
which is not used in the training phase.

To improve the accuracy of the model estimate so as to describe the
behavior of the underlying dynamical system as closely as possible, iden-
tification cycle can be performed iteratively exploiting the information
from the previous iteration. For instance, staring from a simple model
class, the quality of the match between model output and true system
output is assessed based on the identification criterion. If the fit to vali-
dation data is not satisfactory, a more complex model structure is chosen,
its parameters are estimated and validated, etc.
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Following the general identification steps outlined in Table 1, in this
thesis, the identification problem of a special class of model structures
called Linear Parameter-Varying (LPV) models is considered. The thesis
focused on developing a set of tools for data-driven modeling of LPV
systems addressing some of the main questions pertaining to LPV system
identification.

1.1 Linear parameter-varying paradigm

The framework of Linear Time-Invariant (LTI) system identification has
been well established over the years. A vast literature for the identi-
fication of LTI models with well founded theoretical tools is available.
A comprehensive review of the LTI identification methods is given in
[55; 91]. The LTI models have also proven to be useful for controller
synthesis in some engineering applications. However, most physical
processes are inherently nonlinear and time-varying. In order to accu-
rately describe the behavior of such systems, LTI models are found to
be inadequate. Ideally, one can resort to the framework of nonlinear
and time-varying models and develop identification tools for this model
class. Significant research efforts have been made to develop the theory
for nonlinear system identification [12; 42; 54; 76; 80; 84; 88]. However,
dealing with nonlinear models is computationally inefficient for identifi-
cation and control tasks, limiting their use in practical applications [98].

To alleviate this problem and to achieve a balance between accu-
racy of nonlinear modeling and simplicity of the LTI theory, a new class
of model structure termed as Linear Parameter-Varying models has been
proposed using the concept of gain scheduling [87]. The idea of LPV
paradigm originates from the fact that a nonlinear system can be ap-
proximated by LTI models locally at different operating points. Specif-
ically, the nonlinear dynamics is linearized around multiple operating
points resulting in multiple LTI models where each model captures the
behavior of the actual system locally. For controller synthesis of a non-
linear system, multiple controllers are designed based on local LTI mod-
els which are then interpolated to control the nonlinear dynamics over

3



the entire region of operation through gain scheduling. The change from
one operating point to another can be described via a signal, the so called
scheduling signal, denoted in this thesis as p. Thus, the parameters of the
model vary with the time-varying scheduling variable p, at the same time
preserving the linearity between inputs and outputs, hence the name
linear parameter-varying systems. In this way, the nonlinear and time-
varying dynamics are embedded in the scheduling variables. By virtue
of scheduling signals, LPV models can accurately describe the dynamic
behavior of a large class of nonlinear and time-varying systems. This has
led to research initiatives in developing identification and control meth-
ods for LPV models with a growing number of applications such as mod-
eling, analysis and control of aircrafts [4; 57], automobiles [22; 69], dis-
tillation columns [6], helicopter rotor dynamics [105], wind turbine [31],
electronic filter [49], internet web servers [96], etc.

1.2 LPV model representations

In this section, we formalize the description of linear parameter-varying
systems via different model representations used in the context of iden-
tification.

Input-Output models

Inspired from the Linear Time-Invariant Input-Output (LTI-IO) models,
LPV systems can be represented by the following input-output represen-
tation which is commonly used in many LPV identification approaches

y(k) = −
na∑
i=1

ai(p(k))y(k − i) +

nb∑
j=1

bj(p(k))u(k − j) + e(k),

where p is the scheduling parameter, coefficients {ai}nai=1 and {bj}nbj=1 are
functions of pwith static dependency. The noise process is modeled with
e(k), which can be colored or white noise depending upon the selected
noise structure. For Linear Parameter-Varying Input-Output (LPV-IO)
models, the identification problem consists of estimating the unknown

4



p-dependent coefficient functions and the model orders na, nb from the
measurements of inputs, outputs and scheduling variable sequence.

State-Space models

The LPV State-Space (LPV-SS) representation is a direct extension of LTI
state space models. The LPV-SS representation is given as

x(k + 1) = A(p(k))x(k) +B(p(k))u(k) +K1(p(k))e(k),

y(k) = C(p(k))x(k) +D(p(k))u(k) +K2(p(k))e(k),

where x ∈ Rnx is the state variable, e is the white-noise and A, B, C, D,
K1, K2 are matrices with static dependency on the scheduling variable p.
Often the matrices are considered as a linear function of the scheduling
variable, i.e.,

A(p) = A0 +

np∑
j=1

Ajpj ,

where p =
[
p1, . . . , pnp

]> ∈ Rnp is the scheduling parameter vector and
Aj ∈ Rnx×nx are the unknown matrices to be estimated. This represen-
tation is termed as affine dependence.

Linear Fractional Representations

Inspired from the approaches used in the robust control literature [111;
112], Linear Fractional Representation (LFR) is a model structure where the
scheduling variable dependence is extracted into the feedback path and
the forward path is modeled as an LTI system. The forward LTI model
in the LFR form is given as x(k + 1)

z(k)
y(k)

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 x(k)
w(k)
u(k)

 ,
5



where x ∈ Rnx is the state, z ∈ Rnz and w ∈ Rnw are latent variables,
u ∈ Rnu and y ∈ Rny are measured inputs and outputs of the forward LTI
block, and {A, . . . , D22} are unknown constant martices of appropriate
dimensions. The feedback path is represented by

w(k) = ∆(p(k))z(k),

where ∆ : P → Rnp×np is a function of the scheduling parameter p.
This representation is specifically well suited for designing controllers
for LPV models.

1.3 Challenges in LPV model identification

Although the LPV paradigm is a natural extension of the well developed
LTI theory, classical theoretical tools commonly used for LTI system iden-
tification can not be used directly in an LPV setting. This is due to the
fact that many of the properties of LTI system theory no longer hold in
the case of LPV systems, for instance, transfer function models and com-
mutative properties of the operators. Furthermore, for LPV systems the
task of identification is to estimate the model coefficients which are non-
linear functions of the scheduling signals over the scheduling variable
space, leading to a more complex problem as compared to static param-
eter estimation in the case of LTI identification. The main challenges for
the identification of LPV models include but are not limited to the fol-
lowing:

1. Selection of the model structure
One of the main issues in LPV system identification is to choose
an accurate model structure so as to describe the behavior of the
underlying system as closely as possible. The model structure se-
lection problem consists of (i) choosing the type of model (for e.g.,
input-output or state-space representation), (ii) defining appropri-
ate parameterization of the scheduling variable dependent func-
tions which can accurately capture the underlying nonlinearity, (iii)
selecting the dynamical model order in terms of input and output
delays etc.

6



2. Noise-corrupted scheduling signals
In practice, the scheduling variable is a measured exogenous sig-
nal which is corrupted by measurement noise. This leads to a more
challenging errors-in-variable identification problem. Ignoring the
effect of noise on the scheduling signal results in a biased estimate
of the model parameters. Thus, dedicated methods need to be de-
veloped in order to resolve this issue.

3. Identification from closed-loop data
It is well-known that data collected from closed-loop experiments
are less informative for identifying plant models. Moreover, due
to the presence of feedback, there is a correlation between output
noise and inputs to the plant. To handle these issues, the closed-
loop identification approaches developed for LTI systems need to
be modified appropriately for LPV plant models operating in closed-
loop.

4. Deriving models suitable for controller synthesis
In order to use the developed LPV models in practical control ap-
plications, it is important to identify models which are suitable for
controller synthesis. To this aim, it is necessary to adapt the LPV
modeling framework such that it is optimal with respect to control
performance, and simple enough for designing controllers without
compromising the accuracy in describing the underlying system.

5. Computationally efficient methods
A major challenge in LPV identification is to develop algorithms
which are computationally efficient and which can handle the curse
of dimensionality for their applicability to large-scale practical sys-
tems.

In this thesis, we address these challenges by proposing data-driven
LPV model identification methods.
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1.4 Contributions and organization

The contributions and main research questions addressed in this thesis
are outlined as follows

Chapter 2 : LPV model order selection

In this chapter, we address the problem of data-driven model structure
selection of LPV Input-Output (LPV-IO) models. Choosing the model
structure in terms of LPV-IO models requires to specify both the model
order (i.e., number of input and output delays) and the nonlinear depen-
dence of the model coefficients on the scheduling signal. In most cases,
over-parameterized models are used to fit the data in order to have a
low bias and to describe the underlying system adequately. However,
over-parameterization leads to a large variance of the estimated model
parameters and also to a poor generalization to unseen data due to over-
fitting. Thus, accurate determination of model order becomes essential.

We propose two approaches for data-driven model structure selection
of LPV-IO models. In the first approach, the non-parametric framework
of Least Squares Support Vector Machines (LS-SVM) [93] to identify LPV-
IO models is extended for the purpose of model order selection. The
flexibility of LS-SVM is exploited to identify the unknown LPV model
coefficients followed by a convex optimization based approach to select
the model order.

In the second approach, the conventional LASSO method for sparse
estimation is adapted for LPV model order selection to deal with the case
of noise-corrupted scheduling signal. A bias-corrected cost function is
presented which provides an asymptotic bias-free criterion to be opti-
mized when the scheduling variables are corrupted by noise.

The results presented in Chapter 2 are based on the following contri-
butions:

• M. Mejari, D. Piga, and A. Bemporad, “Regularized least square
support vector machines for order and structure selection of LPV-
ARX models,” in Proc. of the 15th European Control Conference, Aal-
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borg, Denmark, pp. 1649 – 1654, 2016. [60].

• M. Mejari, D. Piga, and A. Bemporad, “LPV model-order selec-
tion from noise-corrupted output and scheduling signal measure-
ments,” in Proc. of the 20th IFAC World Congress, Toulouse, France,
pp. 8685 – 8690, 2017. [61]

Chapter 3 : Closed-loop identification of LPV models

In many industrial applications, it is necessary to identify plant mod-
els from systems operating in closed-loop, either because of safety con-
straints or due to unstable open-loop dynamics. The identification of
plant models from closed-loop data is more challenging because the data
gathered from closed-loop is often less informative. Furthermore, the
methods developed for open-loop identification (for e.g., in Chapter 2)
may fail as the output noise and the plant inputs are correlated due to
the presence of feedback. In this chapter, we addressed this issue by
proposing a bias-correction scheme to obtain a consistent estimate of
LPV model parameters from the closed-loop data. The proposed bias-
correction scheme is further extended to deal with the case of noise-
corrupted scheduling signals, which is a more realistic and challenging
errors-in-variable problem.

The results presented in Chapter 3 are based on the following contri-
bution:

• M. Mejari, D. Piga, and A. Bemporad, “A bias-correction method
for closed-loop identification of Linear Parameter-Varying systems,”
in Automatica, vol. 87, pp. 128 – 141, 2018. [62]

Chapter 4 : PWA regression for identification of LPV models

The LPV identification approaches proposed in Chapter 2 and Chapter 3,
follow a conventional framework of parametric and non-parametric meth-
ods in terms of characterizing LPV model coefficients. Alternatively, in
Chapter 4, we formulate the identification of LPV-IO models as a Piece-
Wise Affine (PWA) regression problem. The LPV model coefficients are
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approximated as PWA maps that introduce additional flexibility instead
of restricting to a set of known basis functions as in the case of paramet-
ric methods. In this chapter, a regularized moving horizon algorithm is
proposed for PWA regression using mixed-integer programming.

Furthermore, the framework of the proposed algorithm based on in-
teger programing is applied to the real world problem of energy disag-
gregation. The goal of energy disaggregation problem is to estimate the
power consumption profile of individual household appliances by using
only aggregated power measurements. The performance of the proposed
disaggregation method is tested on a real benchmark dataset.

The results presented in Chapter 4 are based on the following contri-
butions:

• M. Mejari, V.V. Naik, D. Piga, and A. Bemporad, “Regularized
moving horizon PWA regression for LPV system identification,”
Submitted, 18th IFAC Symposium on System Identification, 2017. [58]

• V.V. Naik, M. Mejari, D. Piga, and A. Bemporad, “Regularized
moving horizon PWA regression using mixed-integer quadratic pro-
gramming,” in Proc. of the 25th Mediterranean Control Conference,
Valletta, Malta, pp. 1349 – 1354, 2017. [64]

• M. Mejari, V.V. Naik, D. Piga, and A. Bemporad, “Energy disaggre-
gation using piecewise affine regression and binary quadratic pro-
gramming,” Submitted, 57th IEEE Conference on Decision and Control,
2018. [59]

Chapter 5 : Identification of LPV models with linear frac-
tional representation

This chapter is concerned with the identification of LPV models in Lin-
ear Fractional Representation (LFR). The identification of LFR forms is of
particular interest for its suitability to design controllers for LPV models.
In this chapter, we propose a two stage approach to identify LPV-LFR
models. The first stage consists of estimating the LPV state variable se-
quence using kernel canonical correlation analysis. In the second stage,
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the unknown model parameters are estimated by solving a nonlinear
least squares optimization problem using the state estimates obtained
from the first stage.

The results presented in Chapter 5 are based on the following contri-
bution:

• M. Mejari, D. Piga, R. Tóth, and A. Bemporad, “Identification of
linear parameter varying models with linear fractional representa-
tion,” Submitted, 57th IEEE Conference on Decision and Control, 2018. [63]

Finally, concluding remarks and possible future research directions
are outlined in Chapter 6.
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Chapter 2

LPV model order selection

In this chapter, two independent approaches for the model order se-
lection of Linear Parameter-Varying (LPV) input-output models are pre-
sented. In the first approach, we extend the non-parametric framework
of least squares support vector machines for identification of sparse LPV
models. In the second approach, we introduce a bias-corrected cost func-
tion which is to be optimized for accurate model order selection, when
the scheduling signal measurements are corrupted by noise.

2.1 Introduction

2.1.1 Motivation

Motivated by the need of accurate and low-complexity LPV models, sig-
nificant efforts have been spent in the last years for developing efficient
approaches for identification of discrete-time LPV models, both in state-
space [31; 95; 103; 107] and input-output (IO) representation [9; 51; 78].
As known, a challenging issue in identification is the choice of the mo-
del structure. In fact, an under-parameterized model structure might
not adequately explain the dynamic behaviour of the system, while an
over-parameterized model tends to overfit the data, leading to a poor
generalization to unseen data, besides increasing the complexity of the
final model and of the estimation procedure.
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In terms of LPV identification, choosing the model structure requires
to specify both the model order (in terms of number of output lags, in-
put lags, and input delay) and the nonlinear dependence of the model
coefficients on the scheduling variable p with the so-called basis func-
tions. The basis functions characterize the dependence of the model co-
efficients on the scheduling signal and thus, in order to avoid the use
of under-parametrized models, a large set of basis functions is typically
chosen to adequately describe the underlying system. However, there
is a risk of over-parametrization of the model which may cause a large
variance in the estimate of the model parameters. This is the well known
bias-variance trade-off problem which highlights the need of an accurate
model order selection.

The bias-variance trade-off problem can be partially overcome by us-
ing sparse parametric estimation methods like the Least Absolute Shrink-
age and Selection Operator (LASSO) [97], the Non-Negative Garrote (NNG)
[17] and SPARSe Estimation based on VAlidation (SPARSEVA) [82]. These
methods can be used to select a subset of p-dependent nonlinear basis
functions by penalizing the `1-norm of the model parameters, along with
the fitting error, thus enforcing sparsity in the final estimate of the param-
eter vector. Application of the NNG and SPARSEVA for sparse identifi-
cation of LPV-ARX models in a parametric identification framework is
discussed in [102] and [99], respectively . The extension of LASSO for
order selection in a non-parametric LPV identification framework is dis-
cussed in [79].

2.1.2 Contributions

In this chapter we consider the model order selection of LPV systems
using parametric as well as non-parameteric identification approaches.
The ideas behind the two approaches are described as follows.

Non-parametric approach

In input-output LPV models, the first possible choice to describe the p-
dependent LPV model coefficients is to approximating them as the sum
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of a large set of a-priori specified nonlinear basis functions (e.g., polyno-
mials). However, these functions may not be able to describe the under-
lying nonlinearities accurately and thus, adequate a-priory selection of
the basis functions remains an open problem.

In order to deal with the basis functions selection problem, non para-
metric methods, also termed as kernel-based methods for LPV identi-
fication have been recently proposed in [29; 43; 101]. The main idea
behind kernel methods is to introduce a feature function that maps the
scheduling vector p to a high-dimensional space. The feature maps are
not fixed a-priori and can be potentially infinite-dimensional. Only the
inner products between the feature maps is specified by the user in terms
of nonlinear kernel functions, such as radial basis functions or polynomial
kernels. However, although these methods offer strong flexibility in mod-
eling the nonlinear dependence on the scheduling vector p, they do not
address the problem of selecting the LPV model order.

To the best of our knowledge, the only contribution addressing the is-
sue of LPV model order selection in a kernel-based setting is [79], where
Least-Squares Support Vector Machines (LS-SVM) (i.e., a specific kernel-
based method developed in [93]) are reformulated in order to achieve
data-driven model order selection along with non-parametric identifica-
tion of the p-dependent LPV model coefficients. Specifically, the problem
is formulated by using an extra penalty term aiming at minimizing the
maximum absolute value of the LPV model coefficient functions over a
set of grid points in the scheduling vector space. However, the method
in [79] suffers from the following drawbacks: 1. since it is necessary to
grid the scheduling space, the number of grid points grow exponentially
with the dimension of p, thus increasing the computation load of the op-
timization problem; 2. the LPV model coefficient functions are enforced
to be null only at the chosen gridding points, but nothing can be said
outside these points.

We present a new method for data-driven order selection along with
non-parametric identification of the p-dependent LPV model coefficients,
overcoming the main drawbacks of [79]. This is achieved with the fol-
lowing three-step approach:
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S1. estimate the coefficients for an over-parameterized LPV model us-
ing the non-parametric LS-SVM approach proposed in [101];

S2. scale the estimated coefficients using scheduling-variable depen-
dent polynomial weights, which are then penalised to shrink the
previously estimated model coefficients towards zero;

S3. re-estimate the non-null model coefficients.

In this way, an accurate model of the system is determined with low
bias and less variance in the estimated coefficients. Overall, the pro-
posed method can be seen as a reformulation of the Non-Negative Gar-
rotte approach in a nonparametric framework. The advantage of this ap-
proach over [79] is that it is applicable for identification of LPV systems
which are dependent on multi-dimensional scheduling variables, as the
scheduling space does not need to be gridded. The polynomial weights
also provide flexibility in reshaping and correcting the LPV model coef-
ficients obtained in stage S1.

Parametric approach with noise corrupted scheduling signal

Parametric identification methods characterize the unknown nonlinear
p-dependent LPV model coefficients in terms of known a-priory selected
basis functions. However, most of the parametric LPV identification and
sparse estimation methods available in the literature assume that only
the output measurements are corrupted by noise, while the observations
of the scheduling signal are noise free. In practice, this is an unrealis-
tic assumption in most cases, as the scheduling variable is often mea-
sured by a sensor, and thus inherently affected by measurement noise.
To the best of the our knowledge, the only contributions on LPV identifi-
cation based on noisy measurements of the scheduling signals are given
in [20; 23; 78]. The contribution in [23] addresses the identification of
LPV systems in the set-membership framework, where an outer bound-
ing box on the feasible parameter set is computed under the assumption
that the perturbing noise is bounded. The work in [20] proposes an in-
strumental variable (IV) approach but it is limited to the case in which the
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dependence on the scheduling signal is linear. In [78], these limitations
are overcome by using a bias-corrected IV approach. The method pro-
vides consistent estimates of LPV models with polynomial dependence
on the scheduling variable and the instruments are only required to be
uncorrelated with the noise corrupting the output observations. How-
ever, no penalty function is introduced in [78], and thus `1-regularization
methods (like the LASSO) cannot be used to select the model structure.

We extend the approach presented in [78], to address the issue of
model-order selection by introducing a bias-corrected cost function. An `1-
regularization term is then added to this cost to achieve accurate model-
order selection. Furthermore, by using the introduced bias-corrected
cost as a criterion for cross-validation, an unbiased tuning of the hyper-
parameters influencing the parameter estimates is achieved.

2.1.3 Outline

The chapter is organized as follows: First, in Section 2.2, we introduce
the non-parametric kernel based regularized LS-SVM approach for mo-
del order selection of LPV-ARX models. In Section 2.2.1, a short review
of LPV-ARX model structure and problem statement are given. The stan-
dard LS-SVM method for LPV identification is described in Section 2.2.2.
In Section 2.2.3, the mathematical details of the proposed regularized LS-
SVM approach for model order selection are discussed. The method is
tested on two academic examples and simulation results are presented
in Section 2.2.4.

Next, in Section 2.3 the parametric method for model order selection
from noise-corrupted scheduling signals is presented for Output Error
(OE) LPV models. The considered identification problem is formulated
in Section 2.3.1. In Section 2.3.2, the instrumental-variable identification
method is reviewed, and the asymptotic properties of the estimated pa-
rameters are discussed. The bias-corrected version of the instrumental
variable method is presented in Section 2.3.3. A simulation example il-
lustrating the capabilities of the proposed bias-correction method is pre-
sented in Section 2.3.4. Finally, conclusions are given in Section 2.4.
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2.1.4 Notations

Let Rn be the set of real vectors of dimension n. The `2−norm of the
vector x ∈ Rn is denoted by ‖x‖2. For matrices A ∈ Rm×n and B ∈ Rp×q ,
the Kronecker product between A and B is denoted by A⊗B ∈ Rmp×nq .
Let Iba be the sequence of successive integers {a, a+ 1, · · · , b}, with b > a.
The floor function is denoted by b·c, with bmc being the largest integer
less than or equal to m. The expected value of a random vector x is
denoted by E [x].

2.2 Regularized LS-SVM

Least Squares Support Vector Machine (LS-SVM) is a computationally effi-
cient kernel-based regression approach which has been recently applied
to nonparametric identification of LPV systems [101]. In contrast to para-
metric LPV identification approaches, LS-SVM based methods obviate
the need to parameterize the scheduling dependence of the LPV model
coefficients in terms of a-priori specified basis functions. However, an
accurate selection of the underlying model order is still a critical issue in
the identification of LPV systems in the LS-SVM setting. We address this
issue by extending the LS-SVM method to sparse LPV model identifica-
tion, which, besides non-parametric estimation of the model coefficients,
achieves data-driven model order selection via convex optimization. The
main idea of the proposed method is to first estimate the coefficients of
an over-parameterized LPV model through LS-SVM. The estimated co-
efficients are then scaled by polynomial weights, which are shrunk to-
wards zero to enforce sparsity in the final LPV model estimate. In the
subsequent sections we formally describe the proposed method.

2.2.1 Problem formulation

The analysis driven in this section is dedicated to LPV models in an
I/O form. For clarity of exposition, we consider single-input single-output
(SISO) LPV systems, described by the autoregressive with exogenous input
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(ARX) structure:

y(t) =

no
a∑

i=1

ao
i (p(t))y(t− i) +

no
b∑

j=0

boj (p(t))u(t− j) + eo(t), (2.1)

where t ∈ N denotes the discrete time; u(t) ∈ R and y(t) ∈ R are the
measured input and output signals of the system, respectively; eo(t) is
an additive zero-mean white noise; p(t) : N → P is the measured np-
dimensional scheduling vector (which may include also past observa-
tions of the scheduling signals) and P ⊆ Rnp is a compact set where p(t)
is assumed to take values. The p-dependent coefficient functions ao

i and
boj , as well as the parameters no

a and no
b defining the dynamical order

of the system, are unknown and they have to be estimated from an N -
length observed sequenceDN = {u(t), y(t), p(t)}Nt=1 of data generated by
the system in (2.1).

The following model structure is therefore suitable to describe the
true LPV data-generating system in (2.1):

y(t) =

na∑
i=1

ai(p(t))y(t− i) +

nb∑
j=0

bj(p(t))u(t− j) + e(t), (2.2)

with e(t) denoting the residual term. The parameters na and nb defining
the dynamical order of the model in (2.2) are chosen large enough so that
na > no

a and nb > no
b (i.e., the true system belongs to the chosen model

class).

In the following section, we briefly describe the LPV LS-SVM iden-
tification method proposed in [101], which is used for non-parametric
estimation of the model coefficients {ai}nai=1 and {bj}nbj=0. The main ad-
vantage of the LPV LS-SVM identification method is that it obviates the
need to specify the underlying dependency of coefficients {ai}nai=1 and
{bj}nbj=0 on the scheduling vector p.
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2.2.2 LS-SVM for LPV model identification

Let us consider the LPV-ARX model introduced in (2.2), which is rewrit-
ten in the compact form

y(t) =

ng∑
i=1

ci(p(t))xi(t) + e(t), (2.3)

where xi(t) and ci(p(t)) denote the i-th component of the ng = na+nb+1-
dimensional vector x(t) and c(p(t)), respectively, defined as

x(t) = [y(t− 1) . . . y(t− na) u(t) . . . u(t− nb)]> ,
c(p(t)) = [a1(p(t)) . . . ana(p(t)) b0(p(t)) . . . bnb(p(t))]

>
.

The p-dependent coefficient functions ci(p(t)) are written as

ci(p(t)) = ρ>i φi(p(t)) i = 1, . . . , ng. (2.4)

where ρi ∈ RnH is an unknown vector of parameters and φi : P → RnH

(with i = 1, . . . , na + nb + 1) maps the observed scheduling variable p(t)
to an nH-dimensional space, commonly referred to as the feature space.
Unlike the LPV parametric identification approaches, neither the maps
φi nor the dimension nH of the vectors ρi and φi(p(t)) are explicitly spec-
ified by the user. Potentially, ρi and φi(p(t)) can be infinite-dimensional
vectors (i.e., nH =∞).

Based on the previously introduced notation, the LPV model (2.3) is
rewritten in the linear regression form:

y(t) =

ng∑
i=1

ρ>i φi(t)xi(t) + e(t), (2.5)

where φi(t) is used as a shorthand notation for φi(p(t)).

In the LS-SVM formulation, the following quadratic programming (QP)
problem with a regularized `2 loss function is considered to estimate the

19



LPV model (2.5) from the data observations DN :

min
ρi,e

1

2

ng∑
i=1

ρ>i ρi +
λ

2

N∑
t=1

e2(t) (2.6a)

s.t. e(t) = y(t)−
ng∑
i=1

ρ>i φi(t)xi(t), t ∈ IN1 (2.6b)

where IN1 denotes the set of indexes {1, . . . , N}, and λ > 0 is a tuning

hyper-parameter. The term
N∑
t=1

e2(t) in the cost function (2.6a) aims at

minimizing the prediction error, while the regularization term ρ>i ρi is
added in (2.6a) to prevent overfitting. The hyper-parameter λ should be
then tuned to balance the bias/variance trade-off. Note that the param-
eters ρi minimizing (2.6) cannot be computed since this would require
an explicit representation of the feature maps {φi(t)}

ng
i=1. Thus, the dual

formulation of Problem (2.6) is considered. The Lagrangian L(ρ, e, α) as-
sociated with the primal Problem (2.6) is given by:

L(ρ, e, α) =
1

2

ng∑
i=1

ρ>i ρi +
λ

2

N∑
t=1

e2(t)

−
N∑
t=1

αt

(
e(t)− y(t) +

ng∑
i=1

ρ>i φi(t)xi(t)

)
, (2.7)

where α = [α1 · · ·αN ]> ∈ RN is the vector of Lagrange multipliers as-
sociated with the equality constraints (2.6b). The optimal solution of the
primal QP problem (2.6) is then achieved when the following KKT con-
ditions are satisfied:

∂L
∂ρi

= 0→ ρi =

N∑
t=1

αtφi(t)xi(t), (2.8a)

∂L
∂e(t)

= 0→ e(t) =
1

λ
αt, (2.8b)

∂L
∂αt

= 0→ e(t) = y(t)−
ng∑
i=1

ρTi φi(t)xi(t). (2.8c)
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Substituting equations (2.8a) and (2.8b) into (2.8c) leads to:

y(t) =

ng∑
i=1

(
N∑
t=1

αtxi(t)φ
T
i (t)

)
φi(t)xi(t) +

1

λ
αt t ∈ IN1 . (2.9)

Equations in (2.9) can be written in the matrix form

Y =
(
Ω + λ−1IN

)
α, (2.10)

where, Y = [y(1) · · · y(N)]>, IN is the identify matrix of size N , and Ω

is the kernel matrix whose (j, k)-th entry is given by: [Ω]j,k =
∑ng
i=1[Ωi]j,k

with

[Ωi]j,k = xi(j)φ
>
i (p(j))φi(p(k))xi(k) (2.11)

= xi(j)Ki(p(j), p(k))xi(k), (2.12)

where, Ki is a positive definite kernel function defining the inner prod-
uct φ>i (p(j))φi(p(k)). Specification of the kernel instead of the feature
maps φ is called kernel trick [104] and it obviates the need to specify the
feature maps explicitly, thus allowing the identification of the coefficient
functions ci by only specifying the kernel functions. A typical choice of
kernel, which provides uniformly effective representation of a large class
of smooth functions, is the Radial Basis Function (RBF) function:

Ki(p(j), p(k)) = exp

(
− (p(j)− p(k))

2

σ2
i

)
, i = 1, . . . , ng, (2.13)

where σi > 0 is a hyper-parameter tuned by the user to control the width
of the RBF.

Once the kernel matrix Ω is defined, the Lagrange multipliers α are
computed from (2.10), and the estimates of the coefficients ci are obtained
by substituting (2.8a) into (2.4):

ĉi(·) = ρ>i φi(·) =

N∑
t=1

αtKi(p(t), ·)xi(t), i ∈ Ing1 (2.14)
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2.2.3 Model order selection with LS-SVM

As shown in the previous section, the approach based on LS-SVM allows
one to reconstruct the dependence of the coefficients {ci}

ng
i=1 (or equiva-

lently {ai}nai=1 and {bj}nbj=0) on the scheduling vector p without the need
to explicitly specify the feature maps φi. Nevertheless, the LPV LS-SVM
approach can be further improved for selecting the dynamical structure
of the LPV-ARX model in (2.3), which means detecting the non-zero co-
efficients ci. Indeed, the final estimate obtained by the LS-SVM approach
discussed in Section 2.2.2 strongly depends on the chosen number ng of
coefficients ci (or equivalently, on the chosen values of the parameters na
and nb). As already discussed, low values of na and nb leads to under-
parameterized LPV models with poor capabilities of capturing the dy-
namics of the system. On the other hand, large values of na and nb lead
to over-parameterized models which tend to over-fit the noisy training
data.

In this section, we present an extension of the LS-SVM method, which
aims at estimating a sparse LPV model structure, thus minimizing the
number of non-zero p-dependent coefficients {ci}

ng
i=1. The key idea of

the proposed method is to start with an over-parameterized LPV model,
whose coefficient functions {ci}

ng
i=1 are estimated through the LS-SVM

approach presented in Section 2.2.2. Then, the estimated coefficients
{ĉi}

ng
i=1 are reshaped, multiplying them by polynomial weights that de-

pend on the scheduling variable p. A regularization term which aims
to shrink the polynomial weights towards zero is considered in order to
enforce sparsity in the final estimated model.

Let us introduce the polynomial weights

wi(p(t)) = w>i ϕ(p(t)), i = 1, . . . , ng, (2.15)

where ϕ(p(t)) is a vector of monomials in the variable p(t) and wi ∈ Rnw

is the (unknown) vector of parameters. The monomials in the vector
ϕ(p(t)) are specified a-priori.

Given the estimates of the coefficients obtained from LS-SVM ap-
proach (see eq. (2.14)) and their corresponding values at the training
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points {p(t)}Nt=1, i.e.,

ĉi(p(t)) =

N∑
k=1

αkKi(p(k), p(t))xi(k), i ∈ Ing1 (2.16)

we scale ĉi(p(t)) with the polynomial weights wi(p(t)), i.e.,

c̃i(p(t)) = wi(p(t))ĉi(p(t)) = w>i ϕ(p(t))ĉi(p(t)), i ∈ Ing1 ,

where c̃i are the scaled LPV coefficients.
With the scaled coefficients, the considered LPV-ARX model becomes:

y(t) =

ng∑
i=1

w>i ϕ(p(t))ĉi(p(t))xi(t) + e(t). (2.17)

Now, to enforce the sparsity in the estimate of the (scaled) coefficients
c̃i(p(t)), a group LASSO term penalizing the l∞-norm of the polynomial
coefficient vectors wi is minimized along with the residual error, leading
to the following convex optimization problem:

min
{wi}

ng
i=1

N∑
t=1

(
y(t)−

ng∑
i=1

w>i ϕ(p(t))ĉi(p(t))xi(t)

)2

+ µ

ng∑
i=1

‖wi‖∞ (2.18)

Note that the group LASSO term in (2.18) penalizes the mixed `1,∞-norm
(i.e., sum of the infinity norms) of the parameter vectors wi, with i =

1, . . . , ng . The infinity norm is considered as a norm of the group so that,
at the solution, the vector wi is enforced to be either identically zero or
full. Indeed, only the component of the vector wi with largest absolute
value affects the objective function in (2.18). Note that, when wi is zero,
the polynomial weight wi(·) = w>i ϕ(·) is null. Thus, the corresponding
scaled coefficient function c̃i is also null. The hyper-parameter µ ≥ 0 is
tuned by the user to balance the trade-off between minimizing the fitting
error and minimizing the number of non-zero functions {c̃i}

ng
i=1 defining

the LPV-ARX model with scaled coefficients reported in (2.17).
Summarizing, the shape of the p-dependent LPV model coefficients

{ci}
ng
i=1 is initially obtained through a standard LS-SVM dedicated to LPV
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identification. Then, polynomial weights {wi(p(t))}
ng
i=1 are used to re-

shape the estimated model coefficients {ĉi}
ng
i=1 and, at the same time,

to shrink the LPV model coefficients towards zero, thus reducing the
complexity of the estimated LPV model (by minimizing the number of
nonzero model coefficients {c̃i}

ng
i=1).

As the final estimate of the scaled coefficients {c̃i}
ng
i=1 will be biased

because of the regularization term
ng∑
i=1

‖wi‖∞ (see eq. (2.18)), an LPV

model with reduced complexity, containing only the coefficients {c̃i}
ng
i=1

which have been detected to be nonzero, should be re-identified by using
the non-regularized LS-SVM approach discussed in Section 2.2.2.

2.2.4 Simulation examples

This section shows the effectiveness of the proposed regularized LS-SVM
method on two simulation examples. To study the statistical properties
of the estimation, Monte-Carlo simulations of 100 runs are performed
for each example. At each Monte-Carlo run, a new data set of inputs,
scheduling variables and noises is generated. The output used in the
training phase is corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of the noise eo on the output signal is
quantified through the Signal-to-Noise Ratio (SNR), defined as

SNR = 10 log

∑N
t=1 (y(t)− eo(t))

2∑N
t=1 (eo(t))

2
, (2.19)

Radial basis functions are used as kernels to define the inner product
among the feature maps φi. The values of the hyper-parameters λ, µ (eq.
(2.18)) and σi (characterizing the RBF Ki in (2.13)) are chosen through a
cross-calibration procedure, that is by maximizing (with a grid search)
the Best Fit Rate (BFR) w.r.t. a calibration data set of length NC. The BFR
is defined as

BFR = max

1−

√√√√∑NC

t=1 (y(t)− ŷ(t))
2∑NC

t=1 (y(t)− ȳ)
2
, 0

 (2.20)
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with ŷ(t) being the simulated model output and ȳ being the sample mean
of the output over the calibration set. In order to speed up the calibration
procedure, the parameters σi are chosen to be equal (i.e., σi = σ for all i =

1, . . . , ng). The results obtained after the training and calibration phase
are validated on a noiseless data sequence. The BFR is used to assess
the quality of the estimated models. All computations are carried out on
a i5 1.7GHz Intel core processor with 4 GB of RAM running MATLAB
R2013a. The CVX package [37] is used to solve Problem (2.18).

Example 1

The aim of the academic example reported in this subsection is three-
fold: 1. showing the capabilities of the presented regularization approach
in detecting the correct structure of the underlying LPV data-generating
systems; 2. showing that the variance of estimate obtained by non regu-
larized LS-SVM can be reduced by first detecting the model structure; 3.

comparing the performance, in terms of computational time, of the pre-
sented approach w.r.t. to the regularization approach proposed in [79].
Consider the LPV data-generating system taken from [79]:

y(t) = ao
1(p(t))y(t− 1) +ao

2(p(t))y(t− 2) + bo5(p(t))u(t− 5) + eo(t). (2.21)

The p-dependent coefficients ao
1(p(t)), ao

2(p(t) and bo5(p(t)) are described
by the nonlinear functions:

ao
1(p(t)) =


−0.5, if p(t) > 0.5

−p(t), if − 0.5 ≤ p(t) ≤ 0.5

0.5, if p(t) < −0.5

ao
2(p(t)) = sin(2πp(t)),

bo5(p(t)) = p3(t),

The system is estimated from a training data set DN of length N = 500,
while a calibration data set of length NC = 200 is used to tune the hyper-
parameters λ, µ and σ. To gather data, the input u and the scheduling
parameter p are chosen to be white-noise processes independent of each
other with uniform distribution U(−1, 1). The standard deviation of the
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noise eo is 0.3. The average of the SNR over the over 100 Monte-Carlo
runs is 7 dB. The identification problem is formulated in the LS-SVM
setting by using over-parameterized LPV model structure (2.2) with na =

nb = 10.

First, the estimates of the coefficients {ai}nai=1 and {bj}nbj=0 are obtained
using the non-regularized LS-SVM approach described in Section 2.2.2.
The chosen hyper-parameters, maximizing the BFR w.r.t. the calibration
data set, are: λ = 600 and σ = 0.4. Then, second-order polynomials
{wi(p(t))}

ng
i=1 are used as weights to re-shape the estimated coefficients

{âi}nai=1 and {b̂j}nbj=0, and thus to detect the LPV model structure by solv-
ing Problem (2.18). The chosen hyper-parameter µ, maximizing the BFR
w.r.t. the calibration data set, is µ = 5.

Table 2 and Table 3 show the maximum absolute values (over the
training points {p(t)}Nt=1) of the coefficient functions ai and bj obtained
from the non-regularized LS-SVM approach, along with ones computed
through the regularized LS-SVM version (denoted as R-LS-SVM) pro-
posed in this contribution. The obtained results show that the proposed
regularized LS-SVM approach is able to detect the correct underlying
structure of the LPV data-generating system. Indeed, the only coeffi-
cients ai and bj which have been detected to have an (average) max-
imum absolute value larger than a threshold of 10−6 are: a1, a2 and
b5. Results in Table 2 and Table 3 also show that, as expected, the es-
timate of the nonzero coefficients obtained by the regularized LS-SVM

is biased, because of the regularization penalty
ng∑
i=1

‖wi‖∞ in eq. (2.18)

(note that this a well-known problem affecting also parametric regular-
ization methods like the LASSO). Therefore, the nonzero coefficient func-
tions are re-estimated without the regularization term. Specifically, the
coefficient functions which are detected to be null are discarded in the
description of the LPV model (2.2) and a lower-complexity LPV model
is re-identified through non-regularized LPV LS-SVM approach. The es-
timates of the nonzero coefficients a1, a2 and b5 are plotted in Figure 1,
which shows the mean estimate, along with the standard deviation inter-
vals computed over the 100 Monte-Carlo runs. The estimate of the same
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Figure 1: Example 1. Estimate of the non-zero coefficients obtained via
non-regularized LS-SVM (left panels) and after model order selection (right
panels). True function (solid black line), mean estimate (solid gray line) and
standard deviation intervals (dashed black line) over the 100 Monte Carlo
runs.

coefficients obtained with the non-regularized LPV LS-SVM approach is
also plotted in the same figure. The obtained results show that detect-
ing the LPV model structure is beneficial, in terms of variance reduction,
in the final estimate of the coefficient functions. The BFR obtained us-
ing standard LS-SVM is 0.73, while a BFR equal to 0.92 is achieved by
regularized LS-SVM evaluated on a noise-free validation data set.

For the sake of comparison, the regularization method of [79] is also
run, by gridding the scheduling variable space into 20 equidistant points.
In terms of model quality, the method in [79] is also able to detect the true
LPV model structure. However, the benefits of the proposed method
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Table 2: Example 1. Average and standard deviation (over 100 Monte-Carlo
runs) of the maximum absolute value of the estimated LPV model coeffi-
cients ai(p(t)).

|ai(p(t))| True Mean Mean std std
Value (LS-SVM) (R-LS-SVM) (LS-SVM) (R-LS-SVM)

a1 0.5 0.6245 0.4766 8.54e-02 6.63e-02
a2 1 1.0498 0.9667 3.56e-02 3.81e-02
a3 0 0.1853 2.61e-11 9.80e-02 5.51e-11
a4 0 0.1788 2.25e-11 9.12e-02 3.48e-11
a5 0 0.1858 2.63e-11 8.61e-02 4.01e-11
a6 0 0.1939 3.29e-11 0.1052 6.14e-11
a7 0 0.1987 2.47e-11 0.1033 3.78e-11
a8 0 0.1891 2.24e-11 8.16e-02 3.17e-11
a9 0 0.1935 2.31e-11 9.06e-02 3.43e-11
a10 0 0.1904 3.02e-11 9.45e-02 5.96e-11

Table 3: Example 1. Average and standard deviation (over 100 Monte-Carlo
runs) of the maximum absolute value of the estimated LPV model coeffi-
cients bj(p(t)).

|bj(p(t))| True Mean Mean std std
Value (LS-SVM) (R-LS-SVM) (LS-SVM) (R-LS-SVM)

b0 0 0.1236 1.79e-11 6.30e-02 3.46e-11
b1 0 0.1372 1.68e-11 7.10e-02 2.66e-11
b2 0 0.1292 1.78e-11 5.80e-02 2.63e-11
b3 0 0.1204 1.73e-11 5.64e-02 3.11e-11
b4 0 0.1213 1.56e-11 6.32e-02 2.56e-11
b5 1 1.0133 0.8748 0.1009 7.62e-03
b6 0 0.1270 1.85e-11 5.62e-02 2.65e-11
b7 0 0.1350 1.99e-11 5.66e-02 2.71e-11
b8 0 0.1333 1.96e-11 5.92e-02 3.12e-11
b9 0 0.1201 1.74e-11 5.66e-02 2.69e-11
b10 0 0.1329 1.71e-11 5.63e-02 2.64e-11
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w.r.t. [79] can be appreciated in terms of computational time. For fixed
values of the hyper-parameters λ, µ and σ, the average CPU time (over
the 100 Monte-Carlo runs) required by the proposed identification algo-
rithm is 2 s. On the other hand, the average overall time required by
the method of [79] to solve the same identification problem is 24 s (12x
slower than the method proposed here).

Example 2. Multidimensional scheduling variable

The aim of the academic example considered in this section is to show
the effectiveness of the proposed regularization scheme in the identifi-
cation of LPV systems with multidimensional scheduling signals. This
represents one of the main advantage of the proposed method over [79].
In fact, the method in [79] requires to grid the scheduling space, thus lim-
iting its applicability to the identification of LPV systems with one/two-
dimensional scheduling variables. The considered LPV data-generating
system is described by the difference equation:

y(t) = ao
1(p(t))y(t− 1) + ao

2(p(t))y(t− 2)+

+ bo4(p(t))u(t− 4) + bo5(p(t))u(t− 5) + eo(t),
(2.22)

where, p(t) = [p1(t) p2(t) p3(t)]> ∈ R3. The unknown functions are,

ao
1(p(t)) = 0.3p2

1(t) + 0.2p2
2(t)− 0.1p2

3(t),

ao
2(p(t)) = 0.2p1(t)− 0.3p2(t) + 0.1p3(t),

bo4(p(t)) = 0.2 sin(2πp1(t)) + sin(2πp2(t)),

bo5(p(t)) = 0.4 cos(2πp2(t)) + 0.3 sin(2πp3(t)).

Training data set DN of length N = 3000 is used for estimation, while
a calibration data set of length NC = 1000 is used to tune the hyper-
parameters λ, µ and σ. To generate the data set, the input u and the
scheduling signals p1, p2 and p3 are chosen to be white-noise processes
independent of each other with uniform distribution U(−1, 1). The stan-
dard deviation of the noise eo is 0.08. The average of the SNR over the
over 100 Monte-Carlo runs is 15 dB.
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Figure 2: Example 2. Average (over 100 Monte-Carlo runs) of the maximum
absolute value of the LPV model coefficients {ai}10i=1 and {bj}10j=0 obtained
through non-regularized LS-SVM (left panels) and through regularized LS-
SVM (right panels).

First, the estimates of the coefficients are obtained using the non-
regularized LS-SVM approach described in Section 2.2.2 with hyper pa-
rameters, λ = 900 and σ = 0.8. Then, second-order polynomial functions
{wi(p(t))}

ng
i=1 are used as weights to re-shape the estimated coefficients

{âi}nai=1 and {b̂j}nbj=0, and thus to detect the LPV model structure by solv-
ing Problem (2.18). The chosen hyper-parameter is µ = 25. The total
computational time (including calibration phase) required to solve the
estimation problem is 302 s. For fixed values of λ, σ and µ, the aver-
age computational time is 15.1 s (i.e., 20 different combinations of the
hyper-parameters λ, σ and µ have been tested in calibration). Figure 2
depicts the average maximum absolute values of the estimated coeffi-
cient functions over 100 Monte-Carlo runs. Results in Figure 2 show that
the proposed regularized LS-SVM detects the true structure of the un-
derlying dynamics, while a non-sparse LPV model is obtained by using
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standard LS-SVM. This has an impact on the generalization properties
of the model to unseen data. In fact, the BFR (in validation) obtained
using standard LS-SVM is 0.62, while a BFR equal to 0.88 is achieved by
regularized LS-SVM.

This section concludes the proposed non-parametric method based
on regularized LS-SVM for model order selection of LPV-ARX models.
In the next section, we consider the model order selection problem in
a conventional parametric framework but with a more general Output
Error (OE) noise structure models and with a more challenging errors-
in-variable problem where the scheduling signal measurements are also
corrupted by noise.

2.3 Parametric approach with noise corrupted
scheduling signal

In parametric identification framework, unknown LPV model coefficients
are described by a set of known a-priory selected basis functions. It is im-
portant to achieve a low variance of the model estimate by limiting the
number of parameters to be identified that are associated with each basis
function. Moreover, ignoring the effect of noise on the observations of
the scheduling signals may lead to a bias in the final estimate and, as a
consequence, also to an incorrect selection of the model order. We intro-
duce a bias-corrected cost function for the identification of LPV systems
from noise-corrupted observations of the output and scheduling signal
measurements. The introduced cost function provides a bias-free pa-
rameter estimation along with the model order selection. The proposed
identification approach has two main advantages: (i) the problem of mo-
del order selection can be handled by adding a LASSO-like penalty term
to the bias-corrected cost function; (ii) it provides a bias-free cost as a
criterion to tune some hyper-parameters influencing the final parameter
estimate.
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2.3.1 Problem formulation

Data-generating system

As a data-generating system, let us consider a discrete-time single-input
single-output (SISO) LPV system described by the Output Error (OE) struc-
ture:

yo(k) = −
no
a∑

i=1

ao
i (po(k))yo(k − i)+

no
b∑

j=0

boj (po(k))u(k − j), (2.23a)

y(k) = yo(k) + νo(k), (2.23b)

where u(k) ∈ R and y(k) ∈ R are the measured input and output sig-
nals of the system at time k, respectively, νo(k) is an additive zero-mean
white noise corrupting the output, po(k) is the noise-free scheduling sig-
nal, which is assumed to take value in the compact set P. The functions
ao
i (·) and boj (·) are assumed to be polynomials of maximum degree no

g in
the scheduling variable po(k), and they have to be estimated along with
the parameters no

a, n
o
b , n

o
g defining the structure of the system (2.23). For

the clarity of exposition, we consider the case of scalar scheduling signal
po(k). Extension to the multidimensional case is straightforward.

In order to describe the data-generating system (2.23) in a compact
form, let us introduce the following matrix notation:

po(k) =
[
1 po(k) p2

o(k) · · · pn
o
g

o (k)
]>

,

āo
i =

[
āo
i,0 āo

i,1 · · · āo
i,no

g

]>
, ao

i (po(k)) = (āo
i )
>
po(k),

b̄oj =
[
b̄oj,0 b̄oj,1 · · · b̄oj,no

g

]>
, boj (po(k)) =

(
b̄oj
)>

po(k),

θo =

[
(āo

1)
> · · ·

(
āo
no
a

)> (
b̄o0
)> · · ·(b̄ono

b

)>]>
,

χo(k) = [−yo(k−1) · · · − yo(k−no
a) u(k) · · ·u(k − no

b)]
>
,

φo(k) = χo(k)⊗ po(k).

The data-generating system (2.23) can be then rewritten as:

y(k) = φ>o (k)θo + νo(k). (2.24)

32



Scheduling signal observations

The measurements p(k) of the scheduling signal are assumed to be cor-
rupted by an additive noise ηo(k), i.e.,

p(k) = po(k) + ηo(k), (2.25)

where ηo(k) ∼ N (0, σ2
η) is a zero mean white Gaussian noise uncorre-

lated with the noise corrupting the output signal, i.e., E [ηo(k)νo(t)] = 0

for all time indexes k and t.

LPV model structure

The following model structure (M) is considered to estimate the data-
generating system (2.23):

y(k) = −
na∑
i=1

ai(p(k))y(k − i) +

nb∑
j=0

bj(p(k))u(k − j) + ε(k), (2.26)

with ε(k) denoting the residual term, modeling the mismatch between
the true system and the model output. For the true system to belong
to the model classM, the parameters na and nb defining the dynamical
order of the model in (2.26) are chosen large enough so that na ≥ no

a and
nb ≥ no

b . In other words, an over-parametrized model structure is used.
Moreover, the functions ai : R → R and bj : R → R are parametrized
with polynomial basis functions as follows:

ai(p(k)) = āi,0 +

ng∑
s=1

āi,sp
s(k) = (āi)

>
p(k), (2.27a)

bj(p(k)) = b̄j,0 +

ng∑
s=1

b̄j,sp
s(k) =

(
b̄j
)>

p(k), (2.27b)

where the degree ng of the polynomials in (2.27) is also chosen large
enough so that ng ≥ no

g and p(k) =
[
1 p(k) p2(k) · · · png (k)

]>.
Using the matrix notations introduced in Section 2.3.1, model (2.26)

can be compactly written as:

y(k) = φ>(k)θ + ε(k), (2.28)
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where θ = [ā>1 · · · ā>na b̄>0 · · · b̄>nb ]
> ∈ Rnθ is the vector of model param-

eters to be identified, āi and b̄i are defined similarly to āo
i and b̄oi , and

φ(k) is the regressor with measured (thus, noise-corrupted) outputs and
scheduling signals at time k, defined as φ(k) = χ(k)⊗ p(k), with

χ(k) = [−y(k − 1) · · · − y(k − na) u(k) · · ·u(k − nb)]> .

The identification problem addressed in this section aims at obtaining
an asymptotically unbiased estimate of the “true” parameter vector θo

along with the unknown parameters no
a, no

b and no
g from an N -length

observed data sequence DN = {u(k), y(k), p(k)}Nk=1 generated by (2.23).

2.3.2 Instrumental-variable estimate

As proposed in [51] and [78], an instrumental variable (IV) approach can be
used to handle the bias due to the noise νo(k) affecting the output signal
measurements. This bias can be removed by choosing the instruments
z(k) ∈ Rnθ in such a way that they are uncorrelated with the output noise
νo(k), i.e., E [z(k)νo(k)] = 0 for all k. In the following, we show that,
because of the effect of the noise on the scheduling signal, using only
instrumental variables is not enough to achieve a consistent parameter
estimate and an accurate selection of the model structure.

Consider the following IV-LASSO optimization problem for estimat-
ing a sparse model parameter vector θ:

θ̂IV = argmin
θ

JIV(θ, λ,N), (2.29)

with

JIV(θ, λ,N) =

∥∥∥∥ 1

N

(
Z>Y − Z>Φθ

)∥∥∥∥2

2

+ λ ‖θ‖1 , (2.30)

where Z = [z(1) · · · z(N)]> is the matrix of instrumental variables, Φ =

[φ(1) · · ·φ(N)]> is the regressor matrix, Y = [y(1) · · · y(N)]> is the noise-
corrupted output observation vector. Note that the quadratic term in the
definition of JIV is the loss function minimized in standard IV identifi-
cation schemes [90]. The second term is used to enforce sparsity in the
estimate of θ, and the hyper-parameter λ ≥ 0 is tuned to balance the
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trade-off between model complexity and data fitting. The chosen instru-
ments z(k) must be independent of the output noise realization νo(k).
Thus, a possible choice of z(k) is

z(k) = [−ŷ(k − 1) · · · − ŷ(k − na) u(k) · · ·u(k − nb)]> ⊗ p(k),

where ŷ is an approximation of the noise-free output, independent of the
noise νo, which can be obtained from an estimated (not necessarily unbi-
ased) model of the system. An iterative algorithm can be implemented
to ‘refine’ the instruments [51], by computing an estimate θ of the model
parameters at each iteration, based on which the simulated output ŷ is
generated and used as an instrument at the next run.

Due to the noise in the measurements of p, the quadratic cost in equa-
tion (2.30) is asymptotically biased, in the sense that, asymptotically, its
minimum is not achieved at the true system parameter vector θo (see Ap-
pendix 2.5 for a proof). In order to overcome this drawback, instead of
the cost in equation (2.30), a bias-corrected cost function achieving a con-
sistent estimate of θo, along with an accurate model order selection, is
introduced in the following section.

2.3.3 Bias-corrected LASSO for sparse LPV identification

In this section, we formulate a bias-corrected version of the IV-LASSO
cost JIV(θ, λ,N) to obtain a consistent estimate of the model parame-
ters as well as an accurate model order selection. It will be proved that
the proposed biased-corrected cost function converges asymptotically
(as N → ∞) to the “true cost” function (i.e., a non-negative loss func-
tion which achieves its minimum at the true parameter vector θo). Such
a bias-corrected cost function is also used as an optimal criterion to tune
the regularization parameter λ via cross-validation. To perform model
order selection, let us solve the optimization problem:

θ̂CIV = argmin
θ

JCIV(θ, λ,N), (2.31)

with

JCIV(θ, λ,N) =

∥∥∥∥ 1

N

(
Z>Y −Ψθ

)∥∥∥∥2

2

+ λ ‖θ‖1 . (2.32)
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The function JCIV(θ, λ,N) will be referred to as bias-corrected cost. In case
λ = 0, JCIV(θ, λ,N) will be referred to as non-regularized bias-corrected
cost.

The matrix Ψ appearing in the definition of JCIV(θ, λ,N) was orig-
inally introduced in [78] and it is given by Ψ =

∑N
k=1 Ψk, where each

matrix Ψk is constructed in such a way so as to satisfy the following con-
ditions:

C1. the matrix Ψk only depends on the noise-corrupted observations
of the data {u(k), p(k), y(k)}Nk=1 and on the variance σ2

η of the noise
ηo(k) corrupting the scheduling variable measurement p(k).

C2. let Ωk = z(k)[χ(k)⊗ po(k)]>. Then,

lim
N→∞

1

N

N∑
k=1

Ωk = lim
N→∞

1

N

N∑
k=1

Ψk w.p.1.

Construction of Ψk

As explained in [78], the matrices Ψk satisfying conditions C1 and C2 can
be constructed through the procedure outlined below (inspired by [80]),
under the assumption that the variance σ2

η of the noise corrupting the
scheduling observations p(k) is known.

1. Compute the analytic expression of the conditional expectation ma-
trix E

{
Ωk = z(k)[χ(k)⊗ po(k)]>|Y

}
. By construction, since each

element of the vector po(k) is a polynomial in po(k), the entries of
E {Ωk|Y } are described by an affine combination of the monomials
po(k), p2

o(k), p3
o(k), . . ..

2. Express the nth-order monomial of the noise-free scheduling signal
pno (k) in terms of the expected value of the noise-corrupted mono-
mial pn(k) and the noise variance σ2

η in terms of the probabilists’
Hermite polynomial1:

pno (k) = E

(n!)

bn/2c∑
m=0

(−1)mσ2m
η

m!(n− 2m)!

pn−2m(k)

2m

 (2.33)

1See Appendix 2.5.2 for details of the Hermite polynomial expression
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3. Compute the matrix Ψk by replacing each of the monomials po(k),
p2

o(k), p3
o(k), appearing in the analytic expression of E [Ωk|Y ], with

the term inside the expectation operator in (2.33). In this way, the
matrix Ψk satisfies the following condition:

E
{

1

N
Ωk|Y

}
= E

{
1

N
Ψk|Y

}
∀k ∈ IN1 . (2.34)

Property 1 The computed matrices Ψk satisfy conditions C1 and C2 under the
assumption that the amplitude of the measured output and of the scheduling
signals is bounded.

Proof: Condition C1 is satisfied from the construction of the matrix Ψk.
From a direct application of Ninness’ strong law of large numbers [68], it
can be proved that Ψk also satisfies condition C2. The sketch of the proof
detailed in [78, Appendix A2] is as follows :

Let {v(t)} denote a sequence of random variables characterized by
a constant C such that

∑N
t=1

∑N
s=1 E {v(t)v(s)} < CN . Then from the

strong law of large numbers we have, 1
N

∑N
t=1 v(t)→ 0 as N →∞.

Consider the variable vi,j(k) = [Ψk − Ωk]i,j where [·]i,j denotes the
(i, j)-th entry of the matrix. As the noise corrupting scheduling signal
is white, we have E {vi,j(k)vi,j(t)|Y } = 0 for all k, t ≥ 0, k 6= t. More-
over, since the output y(k) and scheduling signal po(k) are bounded there
exists a positive scalar Gi,j such that E {vi,j(k)vi,j(k)|Y } < Gi,j for all
k > 0. Thus, based on these considerations,

N∑
k=1

N∑
t=1

E {vi,j(k)vi,j(t)|Y } =

N∑
k=1

E {vi,j(k)vi,j(k)|Y } < Gi,jN

Thus, it follows that 1
N

∑N
t=1 vi,j(t)→ 0 as N →∞, or equivalently,

lim
N→∞

1

N

[
N∑
k=1

Ψk

]
i,j

= lim
N→∞

1

N

[
N∑
k=1

Ωk

]
i,j

w.p.1.

Remark 1 For clarity of exposition, the procedure outlined above to construct
Ψk is demonstrated via an example in Appendix 2.5.2. The expression of pno (k)
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in terms of the expected value of the noise-corrupted observation pn(k) and noise
variance σ2

η is not reported in [78] in terms of the Hermite polynomial (2.33),
but in terms of recursive constructions which can be proved to have the compact
expression in (2.33). See Appendix 2.5.2 for details.

Consistency of the bias-corrected cost function

In this section, we prove that minimizing the non-regularized bias cor-
rected cost JCIV(θ, 0, N) leads to a consistent estimate of the system pa-
rameters θo. This basically means that the bias on the estimated param-
eters θ̂CIV due to the noise on the data vanishes as the length N of the
training dataset increases.

In the following, we prove that the non-regularized bias-corrected
cost JCIV(θ, 0, N) converges pointwise (as N → ∞) to the “true” cost
Vo(θ,N) defined as:

Vo(θ,N) =

∥∥∥∥∥ 1

N

N∑
k=1

z(k)
(
yo(k)− [χo(k)⊗ po(k)]

>
θ
)∥∥∥∥∥

2

2

, (2.35)

which achieves its minimum Vo(θ,N) = 0 at θ = θo. In the following, we
will assume that θo is the only minimizer of Vo(θ,N).

Property 2 Let us define the cost function:

Jo(θ,N) =

∥∥∥∥∥ 1

N

N∑
k=1

z(k)
(
y(k)− [χ(k)⊗ po(k)]

>
θ
)∥∥∥∥∥

2

2

. (2.36)

Then, for any compact set Θ ⊂ Rnθ , the following property holds:

lim
N→∞

Jo(θ,N) = lim
N→∞

Vo(θ,N) ∀θ ∈ Θ. (2.37)

Proof: Consider the limit of the argument of the `2-norm in the cost (2.36):
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lim
N→∞

1

N

N∑
k=1

z(k)
(
y(k)− [χ(k)⊗ po(k)]

>
θ
)

(2.38a)

= lim
N→∞

1

N

N∑
k=1

z(k)yo(k) (2.38b)

+ lim
N→∞

1

N

N∑
k=1

z(k)
(
νo(k)− [(χ(k)− χo(k))⊗ po(k)]

>
θ
)

(2.38c)

− lim
N→∞

1

N

N∑
k=1

(
z(k) [χo(k)⊗ po(k)]

>
θ
)
, (2.38d)

where the decomposition above is obtained by splitting y(k) = yo(k) +

νo(k) and χ(k) = χ(k) − χo(k) + χo(k) in (2.38a). We now analyse the
asymptotic behaviour of (2.38). The term (2.38c) converges to zero as N
tends to infinity. This follows from the fact that νo(k) and (χ(k)− χo(k))

are zero mean noises and they are uncorrelated with the instrument z(k).
The remaining term is the sum of (2.38b) and (2.38d), which is equal to
the argument of the `2-norm of the true cost Vo(θ,N) (2.35). Thus, since
the argument of the `2-norm in (2.35) converges to the argument of the
`2-norm in (2.36), because of continuity of the `2-norm, it follows that,
lim
N→∞

Jo(θ,N) = lim
N→∞

Vo(θ,N) for any θ ∈ Θ. �

Next step is to prove that the non-regularized cost JCIV(θ, 0, N) (2.32)
converges asymptotically to Jo(θ,N), or equivalently, because of Prop-
erty 2, to the true cost function Vo(θ,N). This also implies that mini-
mizing the non-regularized bias-corrected cost JCIV(θ, 0, N) provides a
consistent parameter estimate θ̂CIV which asymptotically converges to
true parameter vector θo.

Property 3 For any compact set Θ ⊂ Rnθ , the following property holds:

lim
N→∞

JCIV(θ, 0, N) = lim
N→∞

Jo(θ,N) ∀θ ∈ Θ. (2.39)

Proof: Let us rewrite the argument of the `2-norm of the bias-corrected
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cost JCIV(θ, 0, N) as:

1

N

N∑
k=1

z(k)y(k)− 1

N

N∑
k=1

Ψkθ. (2.40)

By construction of matrix Ψk, we have (see Condition C2):

lim
N→∞

1

N

N∑
k=1

Ψk = lim
N→∞

1

N

N∑
k=1

Ωk. (2.41)

Taking the limit of (2.40) and substituting (2.41) into (2.40) we obtain:

lim
N→∞

1

N

N∑
k=1

z(k)y(k)− 1

N

N∑
k=1

Ψkθ (2.42a)

= lim
N→∞

1

N

N∑
k=1

z(k)y(k)− lim
N→∞

1

N

N∑
k=1

Ωkθ = (2.42b)

= lim
N→∞

1

N

N∑
k=1

z(k)y(k)− z(k) [χ(k)⊗ po(k)]
>
θ. (2.42c)

Note that the argument of the limit in (2.42c) is the argument of the `2-
norm of the cost Jo(θ,N). Thus, because of continuity of the `2-norm
function, eq. (2.39) follows. �

Combining Property 2 and Property 3, we obtain:

lim
N→∞

JCIV(θ, 0, N) = lim
N→∞

Vo(θ,N) ∀θ ∈ Θ. (2.43)

Condition (2.43) implies that the minimum θ̂CIV of the non regular-
ized bias-corrected cost function JCIV(θ, 0, N) converges to the mini-
mum of the true cost Vo(θ,N), i.e.,

lim
N→∞

θ̂CIV = θo. (2.44)

The advantages of introducing the bias-corrected cost JCIV(θ, 0, N)

are twofold:

• it allows us to perform model order selection by adding an `1-
regularization term and it gives a ‘correct’ quadratic error-fitting
term in order to remove the bias (asymptotically) due to the noise
affecting the scheduling variable observations.

40



• the bias-corrected cost JCIV(θ, 0, N) is an unbiased criterion which
can be used to assess the performance of the estimated model, and
thus to tune the hyper-parameter λ via cross validation.

Note that, in the bias-corrected LASSO cost (2.32), the quadratic fitting-
error term is asymptotically unbiased and the `1 regularization enforces
sparsity in the final estimate, shrinking the component of the vector θ
towards zero. Then, the finale estimate θ̂CIV is actually biased. Never-
theless, once the model order is selected based on the regularized cost
JCIV(θ, λ,N), the zero components of the estimated parameter vector
θ̂CIV are discarded and a lower complex model is re-identified by min-
imizing the non-regularized bias-corrected cost JCIV(θ, 0, N), thus ob-
taining a consistent estimate.

Estimation with unknown noise variance

In computing the bias correcting matrix Ψk (Section 2.3.3), the variance
of the noise σ2

η corrupting the scheduling signal measurements is as-
sumed to be known. This is quite a restrictive assumption. Nevertheless,
an exhaustive grid search over the scalar σ2

η can be performed, and the
non-regularized bias-corrected costJCIV(θ̂CIV(σ2

η), 0, N) can be used as a
performance metric, on calibration data, to tune the “optimal” variance
σ2
η via cross-validation. This tuning of σ2

η is simpler than the one used
in [78], which requires to solve a set of nonlinear equations.

2.3.4 Simulation examples

This section illustrates the effectiveness of the proposed method on a
simulation example. The main objective of the example is to show how
the noise on the scheduling signal can deteriorate the performance of the
instrumental variable (IV) scheme detailed in Section 2.3.2, which instead
can be significantly improved if the proposed bias correction method is
used.
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Data-generating system and model structure

The considered data-generating system is of the form:

yo(k) = ao
1,2p

2
o(k)yo(k − 1) + bo0,2p

2
o(k)u(k),

y(k) = yo(k) + νo(k),

p(k) = po(k) + ηo(k),

with true parameters ao
1,2 = −0.8 and bo0,2 = 0.4. The input u(k) is taken

as a white-noise with uniform distribution in the interval [0 1]. The
noise-free scheduling variable is given by po(k) = sin(0.1k) + 0.2δ(k),
with δ(k) being a random variable with Gaussian distribution N (0, 1).
The noise signals ηo and νo are white Gaussian noise processes with stan-
dard deviation ση = 0.25 and σν = 0.06. The influence of the noise on the
signal measurements is quantified in terms of the signal-to-noise ratios:

SNRy = 10 log

∑N
k=1 (yo(k)− ȳo(k))

2∑N
k=1 (νo(k))

2
= 9 dB,

SNRp = 10 log

∑N
k=1 (po(k)− p̄o(k))

2∑N
k=1 (ηo(k))

2
= 10 dB,

with ȳo and p̄o being the sample mean of yo and po.
The following over-parametrized LPV model structureM is used to

describe the behaviour of the system:

y(k) =

na∑
i=1

ai(p(k), θ)y(k − i) +

nb∑
j=0

bj(p(k), θ)u(k − j) + ε(k),

with na = 4 and nb = 2. Each coefficient ai(.) and bj(.) is parametrized
as a second order polynomial in p, i.e.,

ai(p(k), θ) = ai,0 + ai,1p(k) + ai,2p
2(k), (2.45a)

bj(p(k), θ) = bj,0 + bj,1p(k) + bj,2p
2(k). (2.45b)

The IV-LASSO method (based on the minimization of JIV(θ, λ,N) in
(2.30)) and the Bias-corrected IV-LASSO method (based on the minimiza-
tion of JCIV(θ, λ,N) in (2.31)) are compared. The model parameters are
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Figure 3: Non-regularized bias-corrected cost JCIV(θ̂CIV(ση), 0, Nc) vs
noise standard deviation ση .

estimated based on a training set with N = 8000 samples. A recursive
scheme is used to refine the instruments z(k) as described in [78], in order
to maximize the accuracy of the estimated parameters. To study the sta-
tistical properties of the algorithms, a Monte-Carlo study with 100 runs
is performed. At each run, new inputs, scheduling variables and noise
signals are generated.

A calibration set with Nc = 1000 samples is used to calibrate the
hyper-parameter λ and to estimate the noise-variance σ2

η (see Section
2.3.3) through cross-validation. A grid search over the λ and ση is then
performed, and the combined values of λ and ση which provide the
best data fit over the calibration dataset are selected. Specifically, the
non-regularized IV cost JIV(θ̂IV(ση), 0, Nc) and the bias-corrected cost
JCIV(θ̂CIV(ση), 0, Nc), computed on the calibration dataset and for dif-
ferent values of λ and ση , are used to assess the performance of the es-
timated models. The computed value of λ is 9.2 for the IV scheme and
22 for the bias-corrected IV. As far as the estimate of the noise variance
σ2
η is concerned, Figure 3 shows the non-regularized bias-corrected cost
JCIV(θ̂CIV(ση), 0, Nc) (computed w.r.t. the calibration dataset) as a func-
tion of ση and for λ = 22. Note that the minimum of the bias-corrected
cost is achieved for ση = 0.25, which is exactly the true value of the noise
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Table 4: Average and standard deviation (over 100 Monte-Carlo runs) of
the LPV model coefficients ai(p(t)) estimated through IV-LASSO and bias-
corrected (BC) IV-LASSO.

a True Value Mean (IV) Mean (BC-IV) std (IV) std (BC-IV)
a1,0 0 −0.1715 −0.0302 0.0279 0.0358
a1,1 0 0 0 0.0050 0.0019
a1,2 −0.8 −0.3882 −0.7120 0.0241 0.0457
a2,0 0 0.1619 0.0026 0.0313 0.0066
a2,1 0 0 0 0.0040 0.0031
a2,2 0 −0.0040 0.0107 0.0129 0.0152
a3,0 0 0.0044 0 0.0264 0
a3,1 0 0 0 0.0027 0.0029
a3,2 0 0 0 0.0041 0.0016
a4,0 0 0.0146 0 0.0117 0.0012
a4,1 0 0 0 0.0022 0.0014
a4,2 0 −0.0011 0.0015 0.0057 0.0051

standard deviation. This shows that the bias-corrected cost function pro-
vides an efficient criterion to tune the parameter ση .

The estimates of the model parameters computed through the IV-
LASSO and the bias-corrected IV-LASSO approach are reported in Ta-
ble 4, which shows the mean and standard deviations of the estimated
parameters ai,j over the Monte Carlo runs. The obtained results show
that the bias-corrected IV-LASSO provides a parameter estimate close to
the true parameters and it detects the structure of the underlying system
quite accurately. On the other hand, the noise on the scheduling variable
deteriorates the performance of the IV-LASSO scheme, which provides
biased parameter estimates and, as a consequence, also a systematic er-
ror in the selection of the model structure. Similar results are obtained
for the parameters bi,j .

The performance of the IV-LASSO and the biased corrected IV-LASSO
methods is tested on a validation dataset of length Nval = 1000. The Best
Fit Rates (BFR) are reported in Table 5, and the true output and the esti-
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Table 5: BFR computed on validation data.

Method BFR
IV method 0.6061

Bias-Corrected IV 0.9146
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Figure 4: Validation data. Results achieved by IV-LASSO (top panel) and
by the bias-corrected IV-LASSO (bottom panel).

mated model output ŷ are plotted in Figure 4. The obtained results show
the better performance of the bias-corrected IV-LASSO with respect to
the classical IV-LASSO approach.
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2.4 Conclusions

In this chapter, we have proposed two methods for LPV model order
selection in non-parametric and parametric framework.

In the non-parametric setting, we have proposed a regularized LS-
SVM method for sparse identification of LPV-ARX models. The depen-
dence of the LPV model coefficients on the scheduling variable is not
a-priori parameterized, and it is estimated, at the first stage, by using a
standard (i.e., non-regularized) LS-SVM based regression approach. The
obtained coefficients are then re-shaped by polynomial weights, and a
penalty term is minimized in order to shrink the scaled model coeffi-
cients towards zero, thus enforcing a sparse structure in the estimated
LPV model. The proposed method exploits the flexibility of the LS-SVM
to reconstruct the underlying dependence of the LPV model coefficients
on the scheduling signal, while the parametric structure of the scaling
weights allows to select the dynamical structure of the model through
a group-LASSO based approach. The reported simulation results show
the capabilities of the proposed approach and its advantages in terms of
computation time with respect to an other regularized LS-SVM approach
available in the literature.

In the parametric setting, we have presented an extension of the bias-
corrected IV method [78] for sparse identification of LPV-OE models
from noisy scheduling variable measurements. The LPV model-structure
selection problem is solved along with the asymptotically bias-free pa-
rameter estimation, through the formulation of a bias-corrected cost func-
tion. An `1-regularization term is used to enforce sparsity in the param-
eter vector estimate, and the trade-off between model complexity and
data-fitting is balanced through cross-validation, using the introduced
bias-corrected cost as a performance criterion.
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2.5 Appendix

2.5.1 Biased instrumental variable cost

We prove that the quadratic term in (2.30) is an asymptotically biased
cost, in the sense that the true parameter θo is not guaranteed to be the
minimizer of JIV(θ, 0, N) as N → ∞. Let us rewrite the quadratic term
in (2.30) as:

JIV(θ, 0, N) =

∥∥∥∥∥ 1

N

N∑
k=1

z(k)
(
y(k)−[χ(k)⊗p(k)]

>
θ
)∥∥∥∥∥

2

2

=

∥∥∥∥∥ 1

N

N∑
k=1

z(k)
(
yo(k)− [χo(k)⊗ po(k)]

>
θ
)

(2.46a)

+
1

N

N∑
k=1

z(k)
(
νo(k)−[(χ(k)−χo(k))⊗po(k)]

>
θ
)

(2.46b)

− 1

N

N∑
k=1

z(k)
(

[χ(k)⊗ (p(k)− po(k))]
>
θ
)∥∥∥∥∥

2

. (2.46c)

As N → ∞, (2.46b) converges to zero with probability 1 since z(k) is
uncorrelated with the output noise νo(k) and χ(k) − χo(k) depends lin-
early on the past samples νo(k). The term (2.46a) is the ideal cost, since
it quantifies the error between the noise-free and the estimated output.
For θ = θo, (2.46a) is equal to 0. The asymptotically non-zero term (2.46c)
causes the optimum of the asymptotic cost JIV(θ, 0, N) to deviate from
the optimum of the ideal cost.

2.5.2 Construction of Ψk

Hermite polynomial

The Hermite polynomial expression inside the expectation operator in
(2.33) is a compact form to express noise-free monomials pno (k) in terms
of the expected value of the noise-corrupted observation pn(k) and noise
variance σ2

η , instead of the recursive relations reported in [78].
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For example, for each monomial po(k), p2
o(k), p3

o(k), . . ., compute
the coefficients α1(k), α2(k), α3(k), . . . satisfying the following proper-
ties:

po(k) = E{p(k) + α1(k)}
p2

o(k) = E{p2(k) + α2(k)}
p3

o(k) = E{p3(k) + α3(k)}
...

The coefficients α1(k), α2(k), α3(k), . . ., should only depend on the ob-
servations of p(k) and can be computed in a recursive way as follows
(Assuming ηo(k) ∼ N (0, σ2

η)) :
Consider α1(k). Then,

po(k) = E {p(k) + α1(k)} = (2.47a)

= E {po(k) + ηo(k) + α1(k)} = (2.47b)

= po(k) + E {α1(k)} . (2.47c)

Equation (2.47c) implies that E {α1(k)} = 0. Thus, a possible choice of
α1(k) is α1(k) = 0, and po(k) = E {p(k)}.

Similarly, for α2:

p2
o(k) = E

{
p2(k) + α2(k)

}
=

= E
{

(po(k) + ηo(k))2 + α2(k)
}

= p2
o(k) + σ2

η + E {α2(k)} .

Therefore, α2(k) can be chosen as α2(k) = −σ2
η , p2

o(k) = E
{
p2(k)− σ2

η

}
.

For n ≥ 2, the values of αn(k) can be recursively computed on the
basis of the previously obtained estimates of po(k), p2(k), pn−1

o (k), . . ..
For example, for n = 3,

p3
o(k) = E

{
p3(k) + α3(k)

}
= E

{
(po(k) + ηo(k))3 + α3(k)

}
= p3

o(k) + 3poσ
2
η + E {α3(k)}
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This equation implies α3(k) should be selected in such a way that
E{α3(k)} = −3po(k)σ2

η . From the previous computations, we have that
po(k) = E{p(k)}. Thus we get, E{α3(k)} = E{−3p(k)σ2

η} giving a
possible choice of α3(k) as α3(k) = −3p(k)σ2

η . Thus, p3
o(k) = E{p3(k)−

3p(k)σ2
η}.

These relations (for all n) have closed-form expression in terms of the
probabilists’ Hermite polynomials as reported in (2.33).

Illustrative example to construct Ψk :

Consider the following LPV data generating system:

yo(k) = ao
1,2p

2
o(k)yo(k − 1) + bo0,2p

2
o(k)u(k),

y(k) = yo(k) + νo(k),

p(k) = po(k) + ηo(k),

According to the definitions introduced in Section 2.3.1, we have,

χ(k) = [−y(k − 1) u(k)]
>
, p(k) = p2(k), po(k) = p2

o(k),

and

χ(k)⊗ po(k) =
[
−y(k − 1)p2

o(k) u(k)p2
o(k)

]>
,

z(k) =
[
−ŷ(k − 1)p2(k) u(k)p2(k)

]>
,

where ŷ(k − 1) is the simulated output used as an instrument which is
uncorrelated with the output noise νo(k).

Then, the matrix Ωk = z(k)(χ(k)⊗ po(k))> (defined in condition C2)
is given by,[

ŷ(k − 1)y(k − 1)p2(k)p2
o(k) ŷ(k − 1)u(k)p2(k)p2

o(k)
−u(k)y(k − 1)p2(k)p2

o(k) u2(k)p2(k)p2
o(k)

]
It follows that, by taking the expectation w.r.t. scheduling variable noise
ηo(k), the expectation matrix E [Ωk|Y ] is given by,

(p4
o(k) + p2

o(k)σ2
η)

[
ŷ(k − 1)y(k − 1) ŷ(k − 1)u(k)
−u(k)y(k − 1) u2(k)

]
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Now, since from (2.33) we have,

p2
o(k) = E

{
p2(k)− σ2

η

}
and p4

o(k) = E
{
p4(k) + 3σ4

η − 6σ2
ηp

2(k)
}
,

then, the matrix Ψk for k = 1, . . . , N , is given by,

Ψk = (p4(k)− 5p2(k)σ2
η + 2σ4

η)

[
ŷ(k − 1)y(k − 1) ŷ(k − 1)u(k)
−u(k)y(k − 1) u2(k)

]
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Chapter 3

Closed-loop identification
of LPV models

In the previous chapter, identification of LPV input-output models was
addressed in an open-loop setting, i.e., using the data collected by per-
forming an open-loop experiment. The underlying assumption was that
the open-loop system is stable for all input and scheduling signal tra-
jectories. However, due to safety constraints and unstable open-loop
dynamics, system identification of many real-world processes often re-
quire gathering data from closed-loop experiments. Identification of
plant models from closed-loop data imposes more challenges as the data
collected from the closed-loop is less informative and input signals are
correlated with noise corrupting output.

In this chapter, we present a bias-correction scheme for closed-loop
identification of Linear Parameter-Varying Input-Output (LPV-IO) models,
which aims at correcting the bias caused by the correlation between the
input signal exciting the process and output noise. Furthermore, we ex-
tend the bias-correction framework for the case where the scheduling
signals are also corrupted by noise. The proposed identification algo-
rithm provides a consistent estimate of the open-loop model parameters
by correcting the bias stemming from the noise corrupting the output as
well as the scheduling signal measurements.
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3.1 Introduction

3.1.1 Motivation

Many real world systems must be identified based on data collected from
closed-loop experiments. This is typical for open-loop unstable plants,
where a feedback controller is necessary to perform the experiments, and
in many applications in which a controller is needed to keep the system
at certain operating points. Safety, performance, and economic require-
ments are further motivations to operate in closed-loop.

From the system identification point of view, one of the main issues
which makes identification from closed-loop experiments more challeng-
ing than in the open-loop setting is due to the correlation between the
plant input and output noise. If such a correlation is not properly taken
into account, approaches that work in open-loop may fail when closed-
loop data is used [55]. Several remedies have been proposed in the liter-
ature to overcome this problem, especially for the Linear Time-Invariant
(LTI) case (see [27] and [34] for an overview). These approaches can
be classified in: direct methods, which neglect the existence of the feed-
back loop and apply prediction error methods directly on the input-
output data after properly parametrizing the noise model; indirect meth-
ods, where the closed-loop system is identified first and the model of the
open-loop plant is then extracted exploiting the knowledge of the con-
troller and of the feedback structure; joint input-output methods, which
treat the measured input and output signals as the outputs of an aug-
mented multi-variable system driven by external disturbances. The mo-
del of the open-loop process is then extracted based on the estimate of
different transfer functions of the augmented system. Unlike indirect
methods, an exact knowledge of the controller is not needed.

Unfortunately, the extension of these approaches to the Linear Pa-
rameter Varying (LPV) case is not straightforward, mainly because the
classical theoretical tools which are commonly used in closed-loop LTI
identification no longer hold in the LPV setting [98], such as transfer
functions and commutative properties of operators. Therefore, only few
contributions addressing identification of LPV systems from closed-loop
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data are available in the literature. A subspace method, which can be ap-
plied both for open- and closed-loop identification of LPV models was
proposed in [103]. The idea of this method is to construct a matrix ap-
proximating the product between the extended time-varying observabil-
ity and controllability matrices, and later use an LPV extension of the
predictor subspace approach originally proposed in [25]. As far as the
identification of LPV Input-Output (LPV-IO) models is concerned, the
closed-loop output error approach proposed in [47; 48] in the LTI setting
is extended in [15] to the identification of LPV-IO models, whose parame-
ters are estimated recursively through a parameter adaptation algorithm.
Instrumental-Variable (IV) based methods are proposed in [2; 3; 100]. The
contribution in [2] is mainly focused on the identification of quasi-LPV
systems, where the scheduling variable is a function of the output. The
main idea in [2] is to recursively estimate the output signal (and thus the
scheduling variable) through recursive least-squares and later use the
estimated signals (instead of the measurements) to obtain a consistent
estimate of the open-loop model parameters through IV methods. An
indirect approach is used in [3], where IV methods are used to estimate a
model of the closed-loop system based on pre-filtered external reference
and output signals. The plant parameters are later extracted from the
estimated closed-loop model using plant-controller separation methods.
In [100], an iterative Refined Instrumental Variable (RIV) approach is pro-
posed for closed-loop identification of LPV-IO models with Box-Jenkins
noise structures. At each iteration of the IV algorithm, the signals are pre-
filtered by stable LTI filters constructed using the parameters estimated
at the previous iteration. The filtered signals are then used to build the
instruments, which are used to recompute an (improved) estimate of the
model parameters. Unlike the methods in [2; 3], which are restricted to
the case of LTI controllers, the approach in [100] can handle both LTI and
LPV controllers.
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3.1.2 Contributions

In this chapter, we present a bias-correction approach for closed-loop
identification of LPV systems. The main idea underlying bias-correction
methods is to eliminate the bias from ordinary Least Squares (LS) to obtain
a consistent estimate of the model parameters. Bias-correction methods
have been used in the past for the identification of LTI systems both in
the open-loop [41; 109] and closed-loop setting [36; 110], as well as for
open-loop identification of nonlinear [80] and LPV systems from noisy
scheduling variable observations [78]. The main idea behind the closed-
loop identification algorithm proposed in this chapter is to quantify the
asymptotic bias due to the correlation between the plant input and the
measurement noise, based on the available measurements. Recursive re-
lations are derived to compute the asymptotic bias based on the knowl-
edge of the controller and of the closed-loop structure of the system. Fur-
thermore, in order to handle a more realistic scenario where not only
the output signal, but also the scheduling variables are corrupted by a
measurement noise, the proposed approach is combined with the ideas
presented in [78], with the following improvements:

• an analytic expression, in terms of Hermite polynomials, is pro-
vided to compute the bias-correcting term used to handle the noise
on the scheduling variable;

• as the bias-correcting term depends on the variance of the noise
corrupting the scheduling variable, a bias-corrected cost function is
introduced. This cost function serves as a tuning criterion to deter-
mine the value of the unknown noise variance via cross-validation.

Overall, the proposed closed-loop LPV identification approach offers a
computationally low-demanding algorithm which:

(i) provides a consistent estimate of the model parameters;

(ii) can be applied under LTI or LPV controller structures;

(iii) does not require to identify the closed-loop LPV system;

(iv) can handle noisy observations of the scheduling signal.
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3.1.3 Outline

The considered identification problem is formulated in Section 3.2. Sec-
tion 3.3 describes the proposed closed-loop bias-correction approach that
is extended in Section 3.4 to handle the case of identification from noisy
measurements of the scheduling signal. Two case studies are reported in
Section 3.5 to show the effectiveness of the presented method.

3.1.4 Notation

The notation used throughout the chapter is introduced in this section.
Let Rn be the set of real vectors of dimension n. The i-th element of a
vector x ∈ Rn is denoted by xi and ‖x‖2 = x>x denotes the square of
the `2-norm of x. For matrices A ∈ Rm×n and B ∈ Rp×q , the Kronecker
product betweenA andB is denoted byA⊗B ∈ Rmp×nq . Given a matrix
A, the symbol [A]n×m means that A is a matrix of dimension n ×m. Let
Iba be the sequence of successive integers {a, a + 1, · · · , b}, with a < b.
The floor function is denoted by b·c, where bmc is the largest integer less
than or equal to m. The expected value of a function f w.r.t. the random
vector x ∈ Rn is denoted by Ex1,··· ,xn {f(x)}. The subscript x1, · · · , xn is
dropped from Ex1,··· ,xn when its meaning is clear from the context.

3.2 Problem formulation

3.2.1 Data generating system

By referring to Figure 5, consider the LPV data-generating closed-loop
system So. We assume that the plant Go is described by the LPV differ-
ence equations with output-error noise

Go :

{
Ao(q−1, po(k))x(k) = Bo(q−1, po(k))u(k),

y(k) = x(k) + e(k),
(3.1)

and that the controller Ko is a known LPV or LTI system described by

Ko : Co(q−1, po(k))u(k) = Do(q−1, po(k)) (r(k)− y(k)) , (3.2)
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Ko Go

u(k)

e(k)

+r(k)

po(k)

x(k) + y(k)

So

−

Figure 5: Closed-loop LPV data-generating system

where r(k) is a bounded reference signal of the closed-loop system So,
u(k) ∈ R and y(k) ∈ R are the measured input and output signals of
the plant Go, respectively; x(k) is noise-free output; e(k) ∼ N (0, σ2

e) is an
additive zero-mean white Gaussian noise with variance σ2

e corrupting
the output signal; po(k) : N → P is the measured (noise-free) scheduling
signal and P ⊆ Rnp is a compact set where po(k) is assumed to take
values. In order not to make the notation too complex, from now on
we assume that po(k) is scalar (i.e., np = 1). The operator q denotes the
time shift (i.e., q−ix(k) = x(k − i)), and Ao(q−1, po(k)), Bo(q−1, po(k)),
Co(q−1, po(k)) and Do(q−1, po(k)) are polynomials in q−1 of degree na,
nb, nc and nd − 1, respectively, defined as follows:

Ao(q−1, po(k)) = 1 +

na∑
i=1

ao
i (po(k))q−i,

Bo(q−1, po(k)) =

nb∑
i=1

boi (po(k))q−i,

Co(q−1, po(k)) = 1 +

nc∑
i=1

coi (po(k))q−i,

Do(q−1, po(k)) =

nd−1∑
i=0

do
i+1(po(k))q−i,
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where the coefficient functions ao
i , b

o
i , c

o
i , d

o
i are supposed to be polyno-

mials in po(k), i.e.,

ao
i (po(k)) = āo

i,0 +

ng∑
s=1

āo
i,sp

s
o(k), (3.3a)

boi (po(k)) = b̄oi,0 +

ng∑
s=1

b̄oi,sp
s
o(k), (3.3b)

coi (po(k)) = c̄oi,0 +

ng∑
s=1

c̄oi,sp
s
o(k), (3.3c)

do
i (po(k)) = d̄o

i,0 +

ng∑
s=1

d̄o
i,sp

s
o(k), (3.3d)

with āo
i,s ∈ R and b̄oi,s ∈ R being unknown real constants to be identified,

while c̄oi,s ∈ R and d̄o
i,s ∈ R are known coefficients characterizing the con-

troller Ko. In order not to burden the notation, the polynomials in (3.3)
are assumed to have the same degree ng .

The following assumptions are made for the closed-loop data gener-
ating system:

A1. the measurement noise e(k) is uncorrelated with the scheduling
signal po(k) and with the external reference signal r(k);

A2. to avoid algebraic loops, the open-loop plant is strictly causal, i.e.,
bo0(po(k)) = 0;

A3. the controller ensures closed-loop stability of the system So for any
scheduling trajectory po(k) ∈ P.

In order to describe the plant Go in a compact form, the following
matrix notation is introduced:

āo
i =

[
āo
i,0 āo

i,1 · · · āo
i,ng

]>
,

b̄oj =
[
b̄oj,0 b̄oj,1 · · · b̄oj,ng

]>
,

θo =
[
(āo

1)
> · · ·

(
āo
na

)> (
b̄o1
)> · · · (b̄onb)>]> ,
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po(k) =
[
1 po(k) p2

o(k) · · · pngo (k)
]>
,

χo(k) = [−x(k−1) · · · − x(k−na), u(k−1) · · ·u(k−nb)]>,
φo(k) = χo(k)⊗ po(k). (3.4)

Based on the above notation, the plant Go in (3.1) can be rewritten as
follows:

Go : y(k) = φ>o (k)θo + e(k). (3.5)

3.2.2 Model structure for identification

The following parametrized model structure Mθ is considered to de-
scribe the true LPV plant Go in (3.1):

Mθ :y(k) =−
na∑
i=1

ai(po(k))y(k−i) +

nb∑
j=1

bj(po(k))u(k−j) + ε(k), (3.6)

where ε(k) is the residual term.
The functions ai : R→ R and bj : R→ R are parametrized as follows:

ai(po(k)) = āi,0 +

ng∑
s=1

āi,sp
s
o(k) = ā>i po(k), (3.7a)

bj(po(k)) = b̄j,0 +

ng∑
s=1

b̄j,sp
s
o(k) = b̄>i po(k). (3.7b)

Note that, since the contribution in this chapter aims at presenting a con-
sistent closed-loop identification algorithm, the problem of model struc-
ture selection is not addressed. Thus, we assume that both the true plant
Go and the modelMθ share the same parameters na, nb and ng .

By using a similar matrix notation already introduced to describe the
true plant Go in (3.5), the LPV model Mθ in (3.6) can be written in the
linear regression form:

Mθ : y(k) = φ>(k)θ + ε(k), (3.8)

where
θ = [ā>1 · · · ā>na b̄>1 · · · b̄>nb ]

>, (3.9)
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is the vector of model parameters to be identified and φ(k) is the regres-
sor with measured outputs and scheduling signals at time k, defined as

φ(k) = χ(k)⊗ po(k), (3.10)

with

χ(k) = [−y(k−1), . . . ,−y(k−na), u(k−1), . . . , u(k−nb)]>. (3.11)

Problem 1 The identification problem addressed in this chapter aims at com-
puting a consistent estimate of the true system parameter vector θo, given the
model orders na, nb and ng and an N -length observed data sequence DN =

{u(k), y(k), po(k), r(k)}Nk=1 of data generated by the closed-loop system So

in Figure 5. To this aim, a novel identification algorithm based on asymptotic
bias-corrected least squares is described in the next sections.

3.3 Bias-corrected least squares

It is well known that ordinary least squares give an asymptotically biased
estimate of the model parameters due to the feedback structure [91]. In
this section we quantify this bias and show how to remove it to give a
consistent estimate of the model parameter vector θ.

3.3.1 Bias in the least-squares estimate

Consider the LS estimate θ̂LS given by:

θ̂LS =

(
1

N

N∑
k=1

φ(k)φ>(k)

)
︸ ︷︷ ︸

ΓN

−1

1

N

N∑
k=1

φ(k)y(k), (3.12)

under the assumption that matrix ΓN is invertible. In order to compute
the difference between the LS estimate θ̂LS and true system parameters
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θo, the output signal (3.5) is rewritten as follows:

y(k) = φ>o (k)θo + e(k)

= [χo(k)⊗ po(k)]
>
θo + e(k)

= [χ(k)⊗ po(k)]
>
θo + [(χo(k)− χ(k))⊗ po(k)]

>
θo + e(k)

= φ>(k)θo + ∆φ(k)θo + e(k), (3.13)

with

∆φ(k) = [(χo(k)− χ(k))⊗ po(k)]
>

= φ>o (k)− φ>(k). (3.14)

Based on the representation of y(k) in (3.13), the difference between the
least-square estimate θ̂LS and the true system parameter vector θo can be
expressed as follows:

θ̂LS − θo = Γ−1
N

N∑
k=1

1

N
φ(k)y(k)− θo

= Γ−1
N

1

N

N∑
k=1

φ(k)
(
φ>(k)θo + ∆φ(k)θo + e(k)

)
− θo

= Γ−1
N

1

N

N∑
k=1

φ(k)φ>(k)︸ ︷︷ ︸
ΓN

θo + Γ−1
N

1

N

N∑
k=1

φ(k)∆φ(k)θo

+ Γ−1
N

1

N

N∑
k=1

φ(k)e(k)− θo

= Γ−1
N

1

N

N∑
k=1

φ(k)∆φ(k)θo︸ ︷︷ ︸
B∆(θo,φ(k),∆φ(k))

+ Γ−1
N

1

N

N∑
k=1

φ(k)e(k)︸ ︷︷ ︸
Be

(3.15)

Because of strict causality of the plant Go (see Assumption A2), the
regressor φ(k) is uncorrelated with the current value of the noise e(k).
Thus, the term Be in (3.15) asymptotically (as N →∞) converges to zero
with probability 1 (w.p. 1). This is due to the fact that the components
of the regressor φ(k) are uncorrelated with the zero-mean white noise
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e(k) (in fact, because of Assumption A1, the regressor φ(k) is a func-
tion of only past values of the noise e(k − 1), e(k − 2), · · · ). Therefore,
asymptotically, the bias in the LS estimate θ̂LS is only due to the term
B∆(θo, φ(k),∆φ(k)), i.e.,

lim
N→∞

θ̂LS − θo = lim
N→∞

B∆(θo, φ(k),∆φ(k)).

Note that, since the bias term B∆(θo, φ(k),∆φ(k)) depends on the
true system parameters θo as well as on the noise-free regressor φo(k),
it cannot be computed and thus it cannot be simply removed from the
LS estimate θ̂LS.

In order to overcome the first difficulty due to the dependence of
B∆(θo, φ(k),∆φ(k)) on θo, the following estimate, inspired by [78], is in-
troduced:

θ̃CLS = θ̂LS −B∆(θ̃CLS, φ(k),∆φ(k)), (3.16)

with

B∆(θ̃CLS, φ(k),∆φ(k)) = Γ−1
N

1

N

N∑
k=1

φ(k)∆φ(k)θ̃CLS.

The main idea behind (3.16) is to correct the least-squares estimate θ̂LS by
removing the bias termB∆, which is evaluated at the parameter estimate
θ̃CLS instead of at the unknown system parameters θo. Note that (3.16)
provides an implicit expression for the estimate θ̃CLS, as the term B∆

depends on θ̃CLS itself. By simple algebraic manipulations, (3.16) can be
rewritten as follows:

θ̃CLS =θ̂LS − Γ−1
N

1

N

N∑
k=1

φ(k)∆φ(k)θ̃CLS

=θ̂LS − Γ−1
N

1

N

N∑
k=1

φ(k)φ>o (k)θ̃CLS + Γ−1
N ΓN θ̃CLS

=Γ−1
N

(
1

N

N∑
k=1

φ(k)y(k)

)
− Γ−1

N

1

N

N∑
k=1

φ(k)φ>o (k)θ̃CLS + θ̃CLS.
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Thus,

θ̃CLS =

(
1

N

N∑
k=1

φ(k)φ>o (k)

)−1(
1

N

N∑
k=1

φ(k)y(k)

)
. (3.17)

Using the definition ∆φ(k) = φ>o (k)− φ>(k), (3.17) can be written as

θ̃CLS = R−1
N

(
1

N

N∑
k=1

φ(k)y(k)

)
, (3.18)

where

RN =
1

N

(
N∑
k=1

φ(k)φ>(k) +

N∑
k=1

φ(k)∆φ(k)

)
.

Property 4 Assuming that the following limit exists:

lim
N→∞

R−1
N ,

then θ̃CLS is a consistent estimate of true system parameters θo, i.e.,

lim
N→∞

θ̃CLS = θo w.p. 1. (3.19)

Proof: By substituting (3.13) into (3.18), we obtain

θ̃CLS = R−1
N

1

N

(
N∑
k=1

φ(k)(φ>(k) + ∆φ(k))

)
︸ ︷︷ ︸

RN

θo + R−1
N

(
1

N

N∑
k=1

φ(k)e(k)

)
.

Since the regressor φ(k) is uncorrelated with the current value of the
noise e(k), the term 1

N

∑N
k=1 φ(k)e(k) asymptotically converges to zero

w.p. 1. Thus,
lim
N→∞

θ̃CLS = θo w.p. 1.

As ∆φ(k) depends on the unknown noise-free regressors φo(k) the
estimate θ̃CLS in (3.18) cannot be computed. To overcome this problem,
the term φ(k)∆φ(k) is replaced by a bias-eliminating matrix Ψk, which
is constructed (as explained in the following section) in such a way that
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it only depends on the available measurements DN and it satisfies the
following property:

C1 : lim
N→∞

1

N

N∑
k=1

φ(k)∆φ(k) = lim
N→∞

1

N

N∑
k=1

Ψk w.p. 1.

3.3.2 Construction of the bias-eliminating Ψk

A bias-eliminating matrix Ψk satisfying condition C1 is constructed by
evaluating the expected value of the matrix E{φ(k)∆φ(k)}, as follows:

Ψk = E{φ(k)∆φ(k)}
= E{(χ(k)⊗ po(k))([(χo(k)− χ(k))⊗ po(k)]

>
)}

= E{(χ(k)⊗ po(k))(
[
(χo(k)− χ(k))> ⊗ (p>o (k))

]
)}

= E{
[
χ(k)(χo(k)− χ(k))>

]
⊗
[
po(k)p>o (k)

]
}

= E{Υk ⊗Po(k)}
= E{Υk} ⊗Po(k), (3.20)

with

Υk = χ(k)(χo(k)− χ(k))>, (3.21a)

Po(k) = po(k)p>o (k). (3.21b)

The derivations reported above follow from the mixed-product property
of the Kronecker product

(A⊗B) (C ⊗D) = (AC)⊗ (BD) . (3.22)

Property 5 The matrix E{Υk} is given by

[E{Υk}](na+nb)×(na+nb)
= Λk =

[
(Υy

k)na×na 0na×nb ,
(Υu

k)nb×na 0nb×nb ,

]
(3.23)
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where Υy
k and Υu

k are upper triangular matrices,

Υy
k=


f1(k − 1) f2(k − 2) · · · fna(k − na)

0 f1(k − 2)
. . .

...
...

. . . . . . f2(k − na)
0 · · · 0 f1(k − na)

 , (3.24a)

Υu
k =


g1(k−1) g2(k−2) · · · · · · gna(k−na)

0 g1(k−2)
. . .

...
...

. . . . . .
...

0 · · · 0
. . . gna−nb+1(na−nb+1)

 , (3.24b)

and

fm(k − j) = E{−y(k − j +m− 1)e(k − j)},
gm(k − j) = E{u(k − j +m− 1)e(k − j)} ∀m = Ina1 ,

and
fm(k) = gm(k) = 0 for k ≤ 0. (3.25)

Proof: See Appendix 3.7.1.

Property 6 The relation between fm(k) and gm(k) can be expressed by the
following recursion, initialized with f1(k) = −σ2

e for all k = 1, . . . , N ,

gm(k) = −
min(nc,m−1)∑

i=1

ci(po(k+m−1))gm−i(k) (3.26a)

+

min(nd,m)∑
j=1

dj(po(k+m−1))fm−j+1(k), (3.26b)

fm(k) = −
m−2∑
i=1

ao
i (po(k+m−1))fm−i(k) (3.26c)

−
min(nb,m−1)∑

j=1

boj (po(k+m−1))gm−j(k). (3.26d)

Proof: See Appendix 3.7.2 .
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Remark 2 In the case of open-loop data, the input signal is uncorrelated with
the measurement noise affecting the output, i.e., E {u(k − i)e(k − j)} = 0,
∀i 6= j. Moreover, as the measurement noise is assumed to be white, i.e.,
E {y(k − i)e(k − j)} = 0 ∀i 6= j, we have that

1. Υu
k = 0nb×na ,

2. Υy
k is a diagonal matrix with the diagonal entries [Υy

k]
i,i

= −σ2
e , and

thus it does not depend on the true system parameter vector θo.

The above matrices can be used to remove the bias in the identification of open-
loop LPV models with an output-error type noise structure. �

3.3.3 Bias corrected estimate

The matrix Ψk, which actually depends on the true system parameter
θo, is constructed using Property 5 and Property 6 (namely, (3.20), (3.23)
and (3.26)) using an estimated parameter vector θ̂CLS instead of the un-
known θo. Specifically, an implicit expression for the final bias-corrected
estimate is given by:

θ̂CLS =

(
1

N

N∑
k=1

(
φ(k)φ>(k) + Ψk(θ̂CLS)

))−1(
1

N

N∑
k=1

φ(k)y(k)

)
(3.27)

The main properties enjoyed by the estimate θ̂CLS in (3.27) are reported
in the following.

Property 7 Assume that the following limit

lim
N→∞

(
1

N

N∑
k=1

(
φ(k)φ>(k) + Ψk(θo)

))−1

(3.28)

exists. Then, asymptotically, the true system parameter vector θo is a solution
of (3.27), namely, for θ = θo,

θ = lim
N→∞

(
1

N

N∑
k=1

(
φ(k)φ>(k)+Ψk(θ)

))−1(
1

N

N∑
k=1

φ(k)y(k)

)
, (3.29)
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where the limit in (3.29) holds w.p. 1. Thus, if θo is the unique solution
of (3.29), then the estimate θ̂CLS in (3.27) is consistent, i.e.,

lim
N→∞

θ̂CLS = θo. (3.30)

Proof: By construction, E{Ψk(θo)} = E{φ(k)∆φ(k)}, then condition C1
follows from Ninness’ strong law of large numbers [68]. See Property 1
in Chapter 2 for a detailed proof. By substituting

y(k) =
(
φ>(k) + ∆φ(k)

)
θo + e(k),

into the right-hand side of (3.29), we obtain

(
1

N

N∑
k=1

φ(k)φ>(k)+Ψk(θo)

)−1(
1

N

N∑
k=1

φ(k)
(
φ>(k)+∆φ(k)

))
θo (3.31a)

+

(
1

N

N∑
k=1

(
φ(k)φ>(k)+Ψk(θo)

))−1(
1

N

N∑
k=1

φ(k)e(k)

)
. (3.31b)

As the regressor φ(k) is uncorrelated with the white noise e(k), (3.31b)
converges to zero w.p. 1 as N → ∞. Furthermore, from condition C1,
it follows that (3.31a) converges to θo as N → ∞. Thus, (3.29) holds for
θ = θo. Furthermore, taking the limit of the left- and right-hand side
of (3.27), (3.30) follows from (3.29) and uniqueness assumption. �

Note that (3.27) provides an implicit expression for the bias-corrected
estimate θ̂CLS. In order to overcome this problem, (3.27) is solved iter-
atively as detailed in Algorithm 1. The main idea of Algorithm 1 is to
compute the bias-eliminating matrix Ψk at each step τ , using the estimate
θ̂

(τ−1)
CLS obtained at step τ − 1 and then to compute θ̂(τ)

CLS based on (3.27).
Algorithm 1 can be initialized with a random vector θ̂(0)

CLS or, for instance,
with the LS estimates θ̂LS in (3.12). Although convergence of this algo-
rithm is not theoretically proven, and its final solution may depend on
the chosen initial condition, Algorithm 1 seems to be quite insensitive
to initial conditions and its convergence has been empirically observed
from numerical tests (cf. Section 3.5.1).
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Algorithm 1 Iterative bias-correction algorithm

Input: noise variance σ2
e ; tolerance ε; maximum number τmax of itera-

tions; initial condition θ̂(0)
CLS.

1. let τ ← 0;

2. while: τ ≤ τmax

2.1. let τ ← τ + 1;

2.2. compute Ψk(θ̂
(τ−1)
CLS ) using Eqs. (3.20), (3.23) and (3.26);

2.3. calculate the bias corrected estimates θ̂(τ)
CLS in (3.27);

2.4. if
∥∥∥θ̂(τ)

CLS − θ̂
(τ−1)
CLS

∥∥∥
2
≤ ε

2.4.1. exit while;

2.5. end if

3. end while

Output: Bias-corrected estimate θ̂CLS.

3.3.4 Estimate with unknown noise variance

In computing the bias-correcting matrix Ψk (and thus the bias-corrected
estimate θ̂CLS in (3.27)), the variance σ2

e of the noise corrupting the out-
put signal measurements is assumed to be known. This is a restrictive
assumption which may limit the applicability of the proposed identifi-
cation approach. However, the unknown noise variance can be simply
tuned via cross-validation. Specifically, the following cost can be mini-
mized through a grid search over σ2

e,i:

J (θ̂iCLS, σ
2
e,i) =

1

Nc

Nc∑
k=1

(
y(k)− x̂i(k)

)2
, (3.32)

where Nc is the length of the calibration set. The sequence x̂i denotes
the open-loop simulated output of the model with parameters θ̂iCLS es-
timated from Algorithm 1 using a given value of σ2

e,i as a guess for σ2
e .
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The simulated output is defined as:

x̂i(k) = φ̂>cal(k)θ̂iCLS,

where the regressor φ̂cal(k) (as defined in (3.4)) is given by

χ̂(k) =
[
−x̂i(k − 1) · · · − x̂i(k − na) u(k − 1) · · ·u(k − nb)

]>
,

φ̂cal(k) = χ̂(k)⊗ po(k).

It is worth stressing that the cost J in (3.32) is minimized only with
respect to the scalar parameter σe. Specifically, once σ2

e = σ2
e,i is fixed, the

corresponding θ̂iCLS (which depends on the chosen σ2
e,i) is given by (3.27)

and the corresponding cost J can be computed. Among the considered
values of σ2

e,i, the one minimizing J is taken.

3.4 Bias-correction with noisy scheduling sig-
nal measurements

So far we have assumed that noise-free measurements of the schedul-
ing variable po(k) are available. However, in many real applications,
this might not be a realistic assumption, as the scheduling signal is of-
ten related to a measured signal and thus inherently corrupted by mea-
surement noise (e.g., velocity and lateral acceleration in vehicle lateral
dynamics modelling [22], gate-source voltage of a transistor in the de-
scription of an electronic filter [49], air speed and flight altitude in air-
craft control [4]). This noise induces a bias in the final parameter esti-
mate θ̂CLS (3.27). Starting from the results presented in Section 3.3 and
in [78] (where open-loop LPV identification from noisy scheduling vari-
able measurements is addressed), in this section we show how to com-
pute an asymptotically bias-free estimate of the LPV model parameters
from closed-loop data with noisy measurements of the scheduling signal.

In particular, we consider the closed-loop data-generating system So

in Figure 5, and we assume that the noise-free scheduling signal po(k) is
corrupted by an additive zero-mean white Gaussian noise with variance
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σ2
η , independent of the output noise e(k), i.e.,

p(k) = po(k) + η(k), E {η(k)e(t)} = 0, ∀k, t.

Following the same ideas described in Section 3.3, we quantify the bias
in the LS estimate stemming from the output noise e(k) and from the
scheduling signal noise η(k).

3.4.1 Bias-corrected least squares

By defining the “observed” regressor vector as

φp(k) = χ(k)⊗ p(k),

with χ(k) defined in (3.11) and

p(k) =
[
1 p(k) p2(k) · · · png (k)

]>
, (3.33)

the standard least-squares estimate is given by

θ̂pLS =

(
1

N

N∑
k=1

φp(k)φ>p (k)

)
︸ ︷︷ ︸

ΓpN

−1

1

N

N∑
k=1

φp(k)y(k). (3.34)

By similar algebraic manipulations used in (3.15), the asymptotic bias
in the LS estimate (3.34) is expressed as

lim
N→∞

θ̂pLS − θo = lim
N→∞

(ΓpN )−1 1

N

N∑
k=1

φp(k)∆φ(k)θo︸ ︷︷ ︸
B∆(θo,φp(k),∆φ(k))

+ lim
N→∞

(ΓpN )−1 1

N

N∑
k=1

φp(k)∆φp(k)θo︸ ︷︷ ︸
Bp(θo,φp(k),∆φp(k))

, (3.35)

with ∆φ(k) as defined in (3.14) and

∆φp(k) = [χ(k)⊗ (po(k)− p(k))]
>
.
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Following the same rationale used to define θ̃CLS in (3.16), let us in-
troduce the bias-corrected estimate

θ̃pCLS = θ̂pLS −B∆(θ̃pCLS, φp(k),∆φ(k))−Bp(θ̃pCLS, φp(k),∆φp(k)). (3.36)

Remark 3 In the case of noise-free scheduling signal observations, i.e., po(k) =

p(k), φp(k) = φ(k) and Bp(θ̃
p
CLS, φp(k),∆φp(k)) = 0. Thus, (3.36) coincides

with (3.16). �

By algebraic manipulations, the estimate θ̃pCLS in (3.36) can be rewrit-
ten explicitly as:

θ̃pCLS =

(∑N
k=1 φp(k)φ>o (k)

N︸ ︷︷ ︸
)−1

R(p0)

(
1

N

N∑
k=1

φp(k)y(k)

)
, (3.37)

or equivalently as in (3.38)1.
Then, a bias-corrected estimate θ̂pCLS can be obtained from (3.38d) as

follows:

• replace the matrix χ(k)χ>(k) ⊗
[
p(k)p>o (k)

]
by following matrix :

χ(k)χ>(k)⊗Ψp
k which depends only on the available datasetDpN =

{u(k), y(k), p(k), r(k)}Nk=1, satisfying condition:

C2 : lim
N→∞

1

N

N∑
k=1

p(k)p>o (k) = lim
N→∞

1

N

N∑
k=1

Ψp
k w.p. 1. (3.39)

• replace the matrix [χ(k)∆χ(k)] ⊗
[
p(k)p>o (k)

]
by a matrix Ωk de-

pending only on the available datasetDpN and satisfying condition:

C3 : lim
N→∞

1

N

N∑
k=1

[χ(k)∆χ(k)]⊗
[
p(k)p>o (k)

]
= lim
N→∞

1

N

N∑
k=1

Ωk w.p. 1. (3.40)

The procedure to construct the matrices Ψp
k and Ωk satisfying condi-

tions C2 and C3 is outlined in the following section.
1Eq. (3.38b) follows from (3.38a) and the Kronecker product property (3.22).
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θ̃CLS =

(∑N
k=1 [χ(k)⊗ p(k)] [χo(k)⊗ po(k)]>

N

)−1(
1

N

N∑
k=1

φ>p (k)y(k)

)
(3.38a)

=

(∑N
k=1

[
χ(k)χ>o (k)

]
⊗
[
p(k)p>o (k)

]
N

)−1(
1

N

N∑
k=1

φ>p (k)y(k)

)
(3.38b)

=

(∑N
k=1

[
χ(k)(χo(k)−χ(k))>

]
⊗
[
p(k)p>o (k)

]
+
[
χ(k)χ>(k)

]
⊗
[
p(k)p>o (k)

]
N

)−1

×
(

1

N

N∑
k=1

φ>p (k)y(k)

)
(3.38c)

=

(∑N
k=1 [χ(k)∆χ(k)]⊗

[
p(k)p>o (k)

]
+
[
χ(k)χ>(k)

]
⊗
[
p(k)p>o (k)

]
N

)−1

×
(

1

N

N∑
k=1

φ>p (k)y(k)

)
. (3.38d)

3.4.2 Construction of the bias-eliminating matrices

Construction of Ψp
k

Inspired by [78], the bias-correction matrix Ψp
k satisfying C2 in (3.39) is

constructed as follows:

1. compute the analytic expression of E{p(k)p>o (k)}. Note that, since
po(k) and p(k) are polynomials in po(k) and p(k) (see (3.4) and
(3.33)), the entries of E{p(k)p>o (k)} are polynomials in po(k);

2. express the n−th order monomial pno (k) in terms of the expected
value of the noise-corrupted observation pn(k) and noise variance
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σ2
η as the “probabilists” Hermite polynomial: 2

pno (k) = E

(n!)

bn/2c∑
m=0

(−1)mσ2m
η

m!(n− 2m)!

pn−2m(k)

2m

 ; (3.41)

3. compute the matrix Ψp
k by replacing each of the monomials po(k),

p2
o(k), p3

o(k), . . . appearing in the analytic expression of the ma-
trix E{p(k)p>o (k)}, with the term inside the expectation operator
in (3.41).

By construction, the matrix Ψp
k satisfies

E {Ψp
k} = E

{
p(k)p>o (k)

}
. (3.42)

Based on (3.42) and Ninness’ strong law of large numbers [68], Ψp
k satis-

fies Condition C2. An example of construction of matrix Ψp
k is reported

in Appendix 3.7.3.

Construction of Ωk

The matrix Ωk satisfying condition C3 can be constructed by properly
combing the ideas used to construct the bias-eliminating matrices Ψp

k (see
Section 3.4.2) and Υy

k and Υu
k (introduced in (3.24)). Specifically, matrix

Ωk is constructed in such a way that the following equality holds:

Ee,η {Ωk} = Ee,η
{

[χ(k)∆χ(k)]⊗
[
p(k)p>o (k)

]}
. (3.43)

Since, χ(k)∆χ(k) does not depend on the noise η(k) and p(k)p>o (k) does
not depend on the output noise e, and since the random variables e(k)
and η(k) are independent, (3.43) is equivalent to

Ee,η {Ωk} = Ee {[χ(k)∆χ(k)]} ⊗ Eη
{[
p(k)p>o (k)

]}
. (3.44)

Note that χ(k)∆χ(k) is equal to Υk as defined in (3.21a). Thus, the
matrix Ee {[χ(k)∆χ(k)]} is equal to Λk (see (3.23)) and it can be con-
structed using the results in Property 5. However, Λk defined in (3.23)

2The expression of pno (k) in terms of the expected value of the noise-corrupted observa-
tion pn(k) and noise variance σ2

η is not reported in [78] in terms of the Hermite polynomial
(3.41), but in terms of recursive constructions which can be proved to have the compact
expression in (3.41). See Appendix 2.5.2 of Chapter 2 for detailed explanation.
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depends on the noise-free scheduling signal po, and thus its expression
can be only derived analytically, but it cannot be constructed based on
the available dataset DpN . Nevertheless, as Λk(po) does not depend on
the random variable η, condition (3.44) becomes

Ee,η {Ωk} =Λk(po)⊗ Eη
{[
p(k)p>o (k)

]}
=Eη

{
Λk(po)⊗

[
p(k)p>o (k)

]}
. (3.45)

Thus, Ωk can be constructed based on the same procedure outlined in
Section 3.4.2 to construct Ψp

k, replacing the term E
{[

p(k)p>o (k)
]}

in Sec-
tion 3.4.2 with the term Eη

{
Λk(po)⊗

[
p(k)p>o (k)

]}
in (3.45).

As the matrix Λk(po) has a dynamic dependence on po (i.e., it is a
function of po(k), po(k − 1), . . .), the analytic expression of Λk(po) ⊗[
p(k)p>o (k)

]
has product terms such as pno (k), pno (k − 1). Nevertheless,

as the noise terms η(k) and η(k − t) are uncorrelated, ∀t 6= 0, we have
that Eη {pn(k)pn(k − 1)} = Eη {pn(k)}Eη {pn(k − 1)}, and the Hermite
polynomial expression defined in (3.41) can be used to construct Ωk.

3.4.3 Bias-corrected estimate

Based on (3.38d) and the ideas introduced in the previous sections, the
final bias-corrected estimate θ̂pCLS is given by

θ̂pCLS =

(
1

N

N∑
k=1

Ωk(θ̂pCLS)+
[
χ(k)χ>(k)

]
⊗Ψp

k

)−1(
1

N

N∑
k=1

φ>p (k)y(k)

)
.

(3.46)

Note that, as in the case of noise-free scheduling signal, the matrix Ωk
depends on the true system parameter vector θo and the estimate θ̂pCLS

should be computed based on an iterative approach similar to Algo-
rithm 1.

Property 8 Assume that the following limit

lim
N→∞

(
1

N

N∑
k=1

Ωk(θ̂pCLS) +
[
χ(k)χ>(k)

]
⊗Ψp

k

)−1

. (3.47)

exists. Then, asymptotically, the true system parameter vector θo is a solution
of (3.46), namely, for θ = θo,
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θ= lim
N→∞

(
1

N

N∑
k=1

Ωk(θ)+
[
χ(k)χ>(k)

]
⊗Ψp

k

)−1(
1

N

N∑
k=1

φ>p (k)y(k)

)
, (3.48)

where the limit in (3.48) holds w.p. 1. Thus, if θo is the unique solution
of (3.48), then the estimated θ̂pCLS in (3.46) is consistent, i.e.,

lim
N→∞

θ̂pCLS = θo. (3.49)

Proof: Property 8 follows from conditions C2 and C3 and from the
same rationale used in the proof of Property 7. �

3.4.4 Estimation with unknown variances σ2
e and σ2

η

In computing the bias correcting matrices Ωk and Ψp
k, the noise variances

σ2
e and σ2

η are assumed to be known. In the case of noise-free scheduling
variable, the open-loop simulation error was used in Section 3.3.4 as a
performance criterion to tune σ2

e via cross validation. However, in the
noisy p scenario, a cross-validation procedure will fail, as a model with
the “true” system parameters θo will not provide the “true” output due
the fact that the scheduling variable p(k) used to simulate the output of
the model is not the “true” one. In order to overcome this problem, we
propose next a novel procedure based on a bias-free tuning criterion.

Let us introduce the simulated regressor

χ̂(k) = [−ŷ(k − 1) · · · − ŷ(k − na), u(k − 1), · · ·u(k − nb)]> , (3.50)

where ŷ(k) is the bias-corrected simulated model output at time k given
by

ŷ(k) =
[
χ̂(k)⊗ pC(k)

]>
θ̂pCLS (3.51)

and pC(k) being the vector of bias-corrected monomials3.
Given an estimate θ̂pCLS, computed through (3.46) for fixed values

of σe and ση , and a calibration dataset of length Nc not used to compute
θ̂pCLS, define the cost

3The vector of bias-corrected monomials pC(k) is such that it only depends on p(k)
and ση and satisfies the condition E

{
pC(k)

}
= po(k). Thus, it can constructed using the

Hermite polynomial (3.41). For instance, when po(k) =
[
1 po(k) p2o(k)

]>, then pC(k) =[
1 p(k) p2(k)− σ2

η

]>.
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JBC

(
θ̂pCLS(σe, ση)

)
=

∥∥∥∥∥ 1

Nc

Nc∑
k=1

[
χ(k)χ̂>(k)⊗Ψp

k

]
θ̂pCLS (σe, ση)

− 1

Nc

Nc∑
k=1

(
Ωk(θ̂pCLS) +

[
χ(k)χ>(k)

]
⊗Ψp

k

)
θ̂pCLS (σe, ση)

∥∥∥∥∥
2

. (3.52)

The cost JBC will be referred to as bias-corrected cost and, as dis-
cussed in the following, it should be used as a criterion to tune the un-
known noise variances σ2

e and σ2
η .

Property 9 The bias-corrected cost (3.52) asymptotically achieves its minimum
at θ̂pCLS = θo, i.e.,

θo = arg min
θ

lim
Nc→∞

JBC(θ) w.p. 1. (3.53)

Proof: See Appendix 3.7.4.

Property 9 proves that, if JBC(θ) has asymptotically a unique mini-
mizer, then its minimum is achieved at the true system parameter vec-
tor θo. Thus, JBC (θ) is an asympotically bias-free criterion which can
be used to assess the quality of a given model parameter vector θ̂pCLS.
Therefore, the hyper-parameters σe and ση can be tuned through a grid

search using JBC

(
θ̂pCLS(σe, ση)

)
as a performance metric on a calibration

dataset.

3.5 Case studies

In order to show the effectiveness of the proposed identification method,
we consider two examples. In the first example, we focus on the effect of
the measurement noise on the final parameter estimate, hence the model
structure of the true LPV data-generating system is assumed to be exactly
known. As a more realistic case study, the second example addresses the
identification of a nonlinear two-tank system. All the simulations are
carried out on an i5 2.40-GHz Intel core processor with 4 GB of RAM
running MATLAB R2015b.
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The performance of the identified models is assessed on a noiseless
validation dataset not used for training through the Best Fit Rate (BFR)
index, defined as

BFR = max

1−

√√√√∑Nval

k=1 (y(k)− ŷ(k))
2∑Nval

k=1 (y(k)− ȳ)
2
, 0

 , (3.54)

withNval being the length of the validation set and ŷ being the estimated
model output and ȳ the sample mean of the output signal.

3.5.1 Example 1

Data-generating system

The considered closed-loop data-generating system So is taken from [1],
and it consists of an (unknown) LPV plant Go described by (3.1), with

Ao(q−1, pk) = 1 + ao
1(po(k))q−1+ao

2(po(k))q−2, (3.55a)

Bo(q−1, pk) = bo1(po(k))q−1+bo2(po(k))q−2, (3.55b)

where,

ao
1(po(k)) = 1.0− 0.5po(k)− 0.1p2

o(k), (3.56a)

ao
2(po(k)) = 0.5− 0.7po(k)− 0.1p2

o(k), (3.56b)

bo1(po(k)) = 0.5− 0.4po(k) + 0.01p2
o(k), (3.56c)

bo2(po(k)) = 0.2− 0.3po(k)− 0.02p2
o(k). (3.56d)

The noise term e(k) corrupting the output observations is a white Gaus-
sian noise with standard deviation σe = 0.05. This corresponds to a
Signal-to-Noise Ratio (SNR) of 12.5 dB, where the SNR on the output chan-
nel is defined as

SNRy = 10 log

∑N
k=1 (x(k)− x̄)

2∑N
k=1 e

2(k)
, (3.57)

with x̄ denoting the mean of the noise free output.
The controller Ko is LTI and known, and it is described by (3.2) with

Co(q−1, pk) = 1 + co1(po(k))q−1 + co2(po(k))q−1,

Do(q−1, pk) = do
1(po(k)) + do

2(po(k))q−1 + do
3(po(k))q−2,

76



with

co1(po(k)) = −0.28, co2(po(k)) = 0.5,

do
1(po(k)) = 0.35, do

2(po(k)) = −0.28, do
3(po(k)) = 0.1.

The scheduling signal trajectory is described by:

po(k) = 1.1(0.5 sin(0.35πk) + 0.05).

With the given controller Ko, the closed-loop system is stable in the
whole operating range of the scheduling variable po(k). The reference
r(k) is a white noise signal with uniform distribution in the interval
[−1 1]. A training data set DN of length N = 20, 000 is used to esti-
mate the plant Go and, in order to assess the statistical properties of the
proposed identification approach, a Monte-Carlo study with 100 runs
is performed. At each Monte-Carlo run, a new data set of inputs u(k),
scheduling variables po(k), reference signal r(k) and noise e(k) is gener-
ated.

Model structure

As a model structure for the plant Go, we consider the second-order LPV
model

y(k) = −
2∑
i=1

ai(po(k))y(k − i) +

2∑
j=1

bj(po(k))u(k − j),

where the coefficient functions ai(po(k)) and bj(po(k)) are parametrized
as second order-polynomials:

a1(po(k)) = a1,0 + a1,1po(k) + a1,2p
2
o(k),

a2(po(k)) = a2,0 + a2,1po(k) + a2,2p
2
o(k),

b1(po(k)) = b1,0 + b1,1po(k) + b1,2p
2
o(k),

b2(po(k)) = b2,0 + b2,1po(k) + b2,2p
2
o(k).

Identification from noise-free scheduling signal

First, we assume that the observations of the scheduling variable po(k)
are not corrupted by a measurement noise. The following two cases are
considered:
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1. the variance σ2
e of the noise e(k) on the output signal y(k) is known;

2. σ2
e is unknown.

Furthermore, since Algorithm 1 depends on the initial guess θ̂(0)
CLS used to

iteratively compute the bias-correcting matrix Ψk(θ̂
(τ−1)
CLS ) (see Step 2.2),

we test its sensitivity w.r.t. different initial conditions θ̂(0)
CLS.

Identification with known variance σ2
e

The identification results obtained through standard least-squares and
the closed-loop bias-correction approach presented in Algorithm 1 are
compared in Table 6, which shows the averages and the standard devia-
tions of the estimated model parameters over 100 Monte-Carlo runs. The
average CPU time for computing the estimate for a given value of noise
variance is 2.5 sec.

In order to further assess the performance of the developed identifi-
cation scheme, we also compute the BFR on a noise-free validation data
set of length Nval = 10, 000, which is reported in Table 7. The obtained
results shows that, unlike the least squares, the proposed approach pro-
vides a consistent estimate of the system parameters. This leads to a
higher BFR (namely, better reconstruction of the output signal on the val-
idation set) w.r.t. least squares.

In order to analyze the sensitivity of Algorithm 1 w.r.t. the initial con-
dition θ̂(0)

CLS, we initialize Algorithm 1 with 100 different random values
of θ̂(0)

CLS. The initial values of each component of θ̂(0)
CLS are chosen ran-

domly from a uniform distribution in the interval [0 1]. The iterative
algorithm is stopped when no change in the final estimate is observed or
when a maximum number of iterations τmax = 50 is reached. The same
training data-set is used in all runs. We observe that the algorithm is
insensitive to the initial conditions and it provides the same model esti-
mate, resulting in an equal BFR for all the 100 different initial conditions
θ̂

(0)
CLS (see Figure 6).

The proposed method is also compared with a prediction-error method
(PEM). In the prediction-error identification framework, the unknown
plant parameters θ are obtained by minimizing the one-step ahead pre-
diction error: εθ(k) = y(k) − ŷ(k | k − 1) = φ̂>(k)θ, resulting in the
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Table 6: Example 1. Identification from noise-free scheduling signal mea-
surements: means and standard deviations (over 100 Monte-Carlo runs)
of the estimated parameters using Least Squares, the proposed closed-loop
bias-correction method and prediction-error method (PEM).

True Value Least squares Bias-correction PEM
1.00 0.7542± 0.0085 0.9992± 0.0138 0.9976± 0.0082
−0.50 −0.2117± 0.0194 −0.4785± 0.0425 −0.4999± 0.0188
−0.10 −0.9288± 0.0525 −0.1245± 0.1229 −0.0873± 0.0606

0.50 0.3449± 0.0057 0.5000± 0.0088 0.4986± 0.0057
−0.70 −0.7288± 0.0099 −0.6961± 0.0181 −0.7016± 0.0088
−0.10 −0.1685± 0.0295 −0.0994± 0.0609 −0.0898± 0.0403

0.50 0.5001± 0.0037 0.5008± 0.0041 0.4996± 0.0023
−0.40 −0.4007± 0.0070 −0.3997± 0.0081 −0.4007± 0.0027

0.01 −0.0266± 0.0194 0.0063± 0.0235 0.0109± 0.0108
0.20 0.0671± 0.0058 0.1995± 0.0082 0.1986± 0.0043
−0.30 −0.0788± 0.0136 −0.2887± 0.0267 −0.2999± 0.0118
−0.02 −0.4697± 0.0352 −0.0337± 0.0680 −0.0147± 0.0328

minimization of the following non-convex loss function:

W(DN , θ) =
1

N

N∑
k=1

ε2θ(k)

where, the regressor φ̂(k) (as defined in (3.4)) is given by

χ̂(k) = [−ŷ(k − 1) · · · − ŷ(k − na) u(k − 1) · · ·u(k − nb)]> ,

φ̂(k) = χ̂(k)⊗ po(k).

The average CPU time taken by the PEM to find the estimate is 2.5 sec.
The estimated model parameters and the achieved BFR are reported in
Table 6 and Table 7, respectively. Similar results are obtained by the bias-
correction approach and PEM. However, unlike PEM, the proposed bias-
correction approach leads to a consistent parameter estimate also in the
case of noisy scheduling variable observations (as shown in the results
reported in Section 3.5.1).
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Table 7: Example 1. Identification from noise-free scheduling signal mea-
surements: Best Fit Rates (BFRs) over (noise-free) validation data.

Method BFR
Least-squares 0.8202

Bias-correction 0.9964
PEM 0.9984

0 20 40 60 80 100
runs

0.98

0.985

0.99

0.995

1

B
F
R

Figure 6: Example 1. Best Fit Rate for different initial conditions θ̂(0)CLS of
Algorithm 1.

Identification with unknown noise variance σ2
e

We now consider the case where the variance σ2
e of the noise corrupt-

ing the output signal is not known a priori, but recovered through the
cross-validation procedure described in Section 3.3.4. Figure 7 shows
the cost function J (σe) (multiplied by Nc for a better visualization) de-
fined in (3.32) against different values of the hyper-parameter σe. Note
that the minimum of J is achieved exactly at the true value of the noise
standard deviation (i.e., at σe = 0.05). Thus, since the true value of σ2

e

is exactly recovered, the estimated model parameters coincide with the
ones obtained in the case of known variance σ2

e (and already provided in
Table 6).

80



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
σe

0

50

100

150

200

250

J

Figure 7: Example 1. Bias-corrected cost J (defined in (3.32)) vs noise stan-
dard deviation σe.

Identification from noisy scheduling signal

In this paragraph, the proposed closed-loop identification algorithm is
tested for the case of noisy measurements of the scheduling signal. To
this aim, the scheduling variable observations are corrupted by an ad-
ditive zero-mean white Gaussian noise ηo(k) with standard deviation
ση = 0.12. This corresponds to a Signal-To-Noise Ratio SNRp equal to
10 dB4.

The unknown model parameters are computed through the following
three approaches:

1. Least Squares;

2. Bias Correction 1: closed-loop bias-correction without handling the
bias due to the noise on p. The model parameters are estimated
using Algorithm 1, correcting only the bias due to the output noise
e.

3. Bias Correction 2: closed-loop bias-correction correcting both the
bias due to the noise on the scheduling signal observations and the
bias due to the feedback structure.

First, we consider the case when the noise variances σ2
e and σ2

η are known.
The estimated model parameters are provided in Table 8. The norm

4The Signal-To-Noise Ratio SNRp on scheduling variable observations is defined simi-
larly to (3.57).
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Table 8: Example 1. Identification with noisy scheduling signal measure-
ments: means and standard deviations (over 100 Monte-Carlo runs) of
the estimated parameters using Least Squares, Bias Correction 1 and Bias
Correction 2. For the sake of simplicity, the coefficients multiplying the
quadratic terms in (3.56) are set to 0.

True Value Least Squares Bias Correction 1 Bias Correction 2

1.0 0.6908± 0.0070 1.0161± 0.0087 0.9965± 0.0087
−0.5 −0.3337± 0.0160 −0.4524± 0.0311 −0.4970± 0.0358

0.5 0.3297± 0.0044 0.5003± 0.0049 0.4948± 0.0051
−0.7 −0.6123± 0.0082 −0.6274± 0.0152 −0.6906± 0.0169

0.5 0.4970± 0.0021 0.5002± 0.0023 0.5155± 0.0023
−0.4 −0.3769± 0.0062 −0.3662± 0.0067 −0.4221± 0.0075

0.2 0.0357± 0.0043 0.2083± 0.0055 0.2058± 0.0057
−0.3 −0.1727± 0.0105 −0.2765± 0.0176 −0.3095± 0.0204

Table 9: Example 1. Identification with noisy scheduling signal observa-
tions: Best Fit Rates (BFRs) over validation data achieved by: Least-squares;
Bias Correction 1 and Bias Correction 2.

Method
∥∥θo − θ̂

∥∥
2

BFR
Least Squares 0.4513 0.7784

Bias Correction 1 0.0977 0.9641
Bias Correction 2 0.0314 0.9710

∥∥∥θo − θ̂
∥∥∥

2
of the difference between the true system parameters θo and

the estimate parameters θ̂ is reported in Table 9, along with the BFRs on
validation data. The obtained results show that correcting the bias due
to the noise on the scheduling signal observations further improves the
final model parameter estimate.

Finally, we present the results of the proposed method when no in-
formation is available a priori about the variance of the noise corrupting
the output and the scheduling signal measurements. As detailed in Sec-
tion 3.4.4, the standard deviations of the noise signals is estimated by
cross-validation using the bias corrected cost function JBC in (3.52) as a
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Figure 8: Bias corrected cost JBC vs σe and ση .
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Figure 9: JBC vs σe for different values of ση .

performance criterion. Figure 8 shows the bias-corrected cost JBC plot-
ted against range of values of σe and ση . For clarity, we have shown the
2-D plot of JBC versus σe for different values of ση in Figure 9. The cost
JBC as a function of ση for fixed value of σe at which the minimum is
achieved (i.e., at σe = 0.05) is plotted in Figure 10. It can be seen from
the figures that the minimum is achieved at the true values of ση and σe
(i.e., σe = 0.05 and ση = 0.12).
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Figure 10: JBC vs ση for fixed value of σe = 0.05.

3.5.2 LPV identification of a nonlinear two-tank system

As a second case study, we consider the identification of the nonlinear
two-tank system reported in [89]. The physical system consists of two
tanks, placed one above the other. The upper tank receives the liquid
inflow through a pump. The voltage applied to the pump is the input
u(t), which controls the inflow of the liquid in the upper tank. The lower
tank gets the liquid inflow via a small hole at the bottom of the upper
tank. The output y(t) is the liquid level of the lower tank. The following
nonlinear equations are used to simulate the behaviour of the system:

ẋ1(t) = (1/A1)(ku(t)− a1

√
2gx1(t)), (3.59a)

ẋ2(t) = (1/A2)(a1

√
2gx1(t)− a2

√
2gx2(t)), (3.59b)

y(t) = x2(t), (3.59c)

whereA1 = 0.5 m2,A2 = 0.25 m2 are the cross-section areas of tank 1 and
2, respectively, a1 = 0.02 m2, a2 = 0.015 m2 are the cross-section areas of
the holes in the two tanks, g = 9.8 m/s2 is the acceleration due to gravity,
x1(t) and x2(t) are the liquid levels in tank 1 and tank 2, respectively. The
reader is referred to [89] for a more detailed description of the considered
two-tank system.

The plant is controlled by a proportional controller u = Kx2(t), with
K = 1, and the output y(t) is measured with a sampling time of 0.3 sec.
To gather data, the closed-loop system is excited with a discrete-time
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Table 10: Example 2. Best fit rates over validation data achieved by Least-
Squares and closed-loop bias-correction.

Method BFR
Least Squares 0.3517

Bias-correction 0.7748
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Figure 11: Example 2. Validation dataset: true output, simulated output of
the LS model, simulated output of the bias-corrected model.

zero-mean white noise reference signal r(k) uniformly distributed in the
interval [2 15] followed by a zero-order hold block. The measured out-
put y(k) is corrupted by a white Gaussian noise N (0, σ2

e) with σe = 0.01,
which corresponds to an SNR of 20 dB.

To estimate the plant, we consider the LPV model structureMθ de-
scribed in (3.6) and (3.7), with na = 2, nb = 1 and polynomial degree
ng = 2. The input u(k − 1) is used as a scheduling signal p(k). Thus,
the considered model is actually quasi-LPV. N = 20, 000 and Nval =
5, 000 samples are used for training and validation, respectively. The
actual and simulated outputs of the models estimated through standard
least-squares and the proposed bias-correction method are plotted in Fig-
ure 11. For the sake of visualization, only a subset of validation data is
plotted. Furthermore, the BFRs of the estimated models are reported in
Table 10. Note that, although the true system (3.59) does not belong to
the model classMθ, the proposed bias-correction approach outperforms
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standard least squares in estimating the dynamics of the two-tank sys-
tem.

3.6 Conclusions

This chapter has introduced a novel bias-correction approach for closed-
loop identification of LPV systems. Starting from a least-square estimate,
the proposed method exploits the knowledge of the controller to recur-
sively compute an estimate of the asymptotic bias in the model param-
eters due to the feedback loop. This bias is then eliminated in order to
obtain a consistent estimate of the open-loop plant. Based on a similar
rationale, the bias caused by the noise corrupting the scheduling variable
observations is also corrected, thus extending the applicability of the ap-
proach to realistic scenarios where not only the output signal, but also the
scheduling signal observations are affected by a measurement noise. The
computation of the bias strongly depends on the noise variance. In case
this is not available or it cannot be estimated through dedicated experi-
ments, a bias-corrected cost serves as a performance criterion for tuning
the noise variance. The reported examples point out that the proposed
method outperforms least-squares in terms of achieving a consistent es-
timate of the open-loop model parameters, provided that the true sys-
tem belongs to the chosen model class. Although the latter assumption
is barely achieved in practice, correcting the bias due to the measure-
ment noise also leads to a significant improvement in the final model
estimate when an under-parametrized model structure is considered, as
shown in the second case study. Future activities will be devoted to the
extension of the presented approach under more general controller struc-
tures, like linear model-predictive controllers, which are characterized by
piecewise-affine state-feedback control laws. Furthermore, conditions to
guarantee convergence of the iterative Algorithm 1 will be sought.
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3.7 Appendix

3.7.1 Proof of Property 5

The a-priori known controllerKo and the closed-loop structure So in Fig-
ure 5 is exploited to construct the matrix Ψk, taking into account that the
input signals depend on the measurement noise e(k) due to the presence
of feedback. Property 5 can be proved as follows. According to (3.20),

Ψk = E{φ(k)∆φ(k)} = E {Υk} ⊗Po(k),

with
E {Υk} = E

{
χ(k)(χo(k)− χ(k))>

}
. (3.60)

By definition of χ(k) and χo(k), we have:

χo(k)− χ(k) = [e(k − 1) · · · e(k − na) 01×nb ]
>
.

Then,

E {Υk} = E
{
χ(k)(χo(k)− χ(k))>

}
=

E





−y(k − 1)e(k − 1) · · · −y(k − 1)e(k − na)
... −y(k − i)e(k − i)

... 0na×nb
−y(k − na)e(k − 1) · · · −y(k − na)e(k − na)
u(k − 1)e(k − 1) · · · u(k − 1)e(k − na)

...
. . .

... 0nb×nb
u(k − nb)e(k − 1) · · · u(k − nb)e(k − na)




(3.61)

The following observations are made to compute E {Υk} explicitly. The
value of input and output at time k does not depend on the future values
of the measurement noise e, i.e.,

E {y(k − i)e(k − j)} = 0,

E {u(k − i)e(k − j)} = 0 ∀i > j.

This implies that the matrices Υy
k and Υu

k are upper triangular as in (3.24a)
and (3.24b).

3.7.2 Proof of Property 6

The recurrence relations in Property 6 can be proved with the following
observations:
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1. Due to the strict causality of the plant Go and since e is white, the
noise-free output x(k) does not depend on the current and future
values of the measurement noise, i.e.,

E {x(k − i)e(k − j)} = 0 ∀i ≥ j.

Thus, for i = j,

− E {y(k − i)e(k − i)}
=− E {(x(k − i) + e(k − i))e(k − i)}
=− E {x(k − i)e(k − i)} − E {e(k − i)e(k − i)}
=0− σ2

e = −σ2
e = f1(k − i). (3.62)

2. The terms fm(k) and gm(k) can be computed in a recursive manner
as described in the following.

Let us first consider the term fm(k). By definition:

fm(k) = −E {y(k +m− 1)e(k)} .

By writing y(k) as x(k) + e(k), we have

fm(k) = −E {x(k+m−1)e(k)+e(k+m−1)e(k)}
= −E {x(k+m−1)e(k)}

= −E

{
−
na∑
i=1

ao
i (po(k+m−1))x(k+m−1−i)e(k)

+

nb∑
i=1

boj (po(k+m−1))u(k−m−1−j)e(k)

}

=−
na∑
i=1

ao
i (po(k+m−1))(−E {x(k+m−1− i)e(k)})

−
nb∑
i=1

boj (po(k+m−1))(E {u(k−m−1−j)e(k)})

with f1(k) = −σ2
e (see (3.62)). Note that,

−E {x(k +m− 1− i)e(k)} = fm−i(k),

E {u(k −m− 1− j)e(k)} = gm−j(k).
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Thus,

fm(k) = −
na∑
i=1

ao
i (po(k+m−1))fm−i(k)

−
nb∑
i=1

boj (po(k+m−1))gm−j(k).

Since fm = 0 and gm = 0, for m ≤ 0, we have

fm(k) = −
m−2∑
i=1

ao
i (po(k +m− 1))fm−i(k)

−
min(nb,m−1)∑

j=1

boj (po(k +m− 1))gm−j(k).

Consider now the term gm(k). Since the reference signal r(k) is
uncorrelated with the measurement noise e(k), i.e., E(r(k)e(k′)) =
0, ∀k, k′, the terms gm(k) (for m = 1, · · · , na) can be computed as

gm(k) = E {u(k+m−1)e(k)}

= E

{
−

nc∑
i=1

ci(po(k+m−1))u(k+m−1−i)e(k)

+

nd−1∑
j=0

dj+1(po(k+m−1))(−x(k+m−1−j)e(k))


= −

nc∑
i=1

ci(po(k+m−1))(E {u(k+m−1−i)e(k)})

+

nd−1∑
j=0

dj+1(po(k+m−1))(−E {x(k+m−1−j)e(k)})

= −
nc∑
i=1

ci(po(k+m−1))gm−i(k)

+

nd−1∑
j=0

dj+1(po(k+m−1))fm−j(k).
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Since fm = 0 and gm = 0, for m ≤ 0, it follows that

gm(k) = −
min(nc,m−1)∑

i=1

ci(po(k+m−1))gm−i(k)

+

min(nd,m)∑
j=1

dj(po(k+m−1))fm−j+1(k).

Thus, the recurrence relations in Property 6 are proved.

3.7.3 Construction of Ψp
k

For clarity of exposition, the procedure outlined in Section 3.4.2 to con-
struct Ψp

k is shown via the following example.
Consider the following vector of monomials

po(k) = [1 po(k) p2
o(k)]>, p(k) = [1 p(k) p2(k)]>.

Then,

p(k)p>o (k) =

 1 po(k) p2
o(k)

p(k) p(k)po(k) p(k)p2
o(k)

p2(k) p2(k)po(k) p2(k)p2
o(k)


By writing p(k) as po(k) + η(k) and taking the expectation of p(k)p>o (k)
w.r.t. the random variable η(k), we get

E[p(k)p>o (k)] = 1 po(k) p2
o(k)

po(k) p2
o(k) p3

o(k)
p2

o(k) + σ2
η p3

o(k) + σ2
ηpo(k) p4

o(k) + σ2
ηp

2
o(k)

 .
Then, matrix Ψp

k is constructed by replacing each monomial pno (k) with
the Hermite polynomial in (3.41), that is

Ψp
k=

 1 p(k) p2(k)− σ2
η

p(k) p2(k)− σ2
η p3(k)− 3σ2

ηp(k)
p2(k) p3(k)−2σ2

ηp(k) p4(k)− 5σ2
ηp

2(k)+2σ4
η

.
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3.7.4 Proof of Property 9

Because of conditions C2 and C3, we have:

lim
Nc→∞

1

Nc

Nc∑
k=1

Ωk(θo) +
[
χ(k)χ>(k)

]
⊗Ψp

k =

lim
Nc→∞

1

Nc

Nc∑
k=1

φp(k)φ>o (k) w.p. 1. (3.63)

Let us now focus on the term χ(k)χ̂>(k) ⊗ Ψp
k appearing in the bias-

corrected cost (3.52).
For the sake of simplicity, let us assume that the initial condition χ̂(1)

used to simulate the bias-corrected output ŷ(1) is known, i.e., χ̂(1) =
χo(1). This means

Eη {ŷ(i)} = yo(i) ∀i = −na + 1, . . . , 0. (3.64)

Let us now prove, by induction, that for θ̂pCLS = θo,

Eη {ŷ(k)} = yo(k) ∀ k > 0. (3.65)

Suppose that the above equation holds for k − na, . . . , k − 1, i.e.,

Eη {ŷ(k − i)} = yo(k − i) ∀i = 1, . . . , na. (3.66)

Note that, for θ̂pCLS = θo,

Eη {ŷ(k)} = θ>o
(
Eη
{
χ̂(k)⊗ pC(k)

})
(3.67a)

= θ>o
(
Eη {χ̂(k)} ⊗ Eη

{
pC(k)

})
(3.67b)

= θ>o (Eη {χ̂(k)} ⊗ po(k)) (3.67c)

= θ>o [χo(k)⊗ po(k)] (3.67d)
= yo(k), (3.67e)

where (3.67b) follows from white noise assumption on η and (3.67d) fol-
lows from (3.66) and construction of the bias-corrected monomials pC(k).
Thus, from (3.64), (3.66) and (3.67), (3.65) follows by induction.

Eq. (3.65) also implies that

Eη {χ̂(k)} = χo(k) ∀ k > 0. (3.68)
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Thus,

Eη
{
χ(k)χ̂>(k)⊗Ψp

k

}
= Eη

{
χ(k)χ̂>(k)

}
⊗ Eη {Ψp

k} (3.69a)

= χ(k)χ>o (k)⊗ Eη
{
p(k)p>o (k)

}
(3.69b)

= Eη
{
χ(k)χ>o (k)⊗ p(k)p>o (k)

}
(3.69c)

= Eη
{

(χ(k)⊗ p(k)) (χo(k)⊗ po(k))
>
}

(3.69d)

= Eη
{
φp(k)φ>o (k)

}
, (3.69e)

where (3.69b) follows from (3.68) and (3.42). Then, because of (3.69) and
Ninness’ strong law of large numbers [68], at θ̂pCLS = θo, we have

lim
Nc→∞

1

Nc

Nc∑
k=1

χ(k)χ̂>(k)⊗Ψp
k

= lim
Nc→∞

1

Nc

Nc∑
k=1

φp(k)φ>o (k) w.p. 1. (3.70)

Thus, from (3.63) and (3.70), we obtain:

lim
Nc→∞

JBC (θo) = 0 w.p. 1. (3.71)

Property 9 follows from (3.71) and because of non-negativity of the cost
JBC. This completes the proof.

Note that, even if the initial conditions are not exactly known (i.e., as-
sumption (3.64) is not satisfied), Property 9 still holds since the error due
to the mismatch between the true initial conditions and the ones used
to simulate the output ŷ vanishes asymptotically, under the assumption
that the system is asymptotically stable.
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Chapter 4

PWA regression for
identification of LPV
models

The methodologies presented so far in the previous chapters for the iden-
tification of Linear Parameter-Varying (LPV) models fall under the con-
ventional framework of parametric and non-parametric approaches. In
parametric methods, the nonlinear LPV model coefficients are param-
eterized in terms of a-priory specified basis functions whereas in non-
paramtric approaches these coefficients are characterized implicitly via
kernel maps.

Alternative to the conventional methods, in this chapter, the LPV
identification problem is transformed into PieceWise Affine (PWA) regres-
sion problem. Specifically, the nonlinear LPV model coefficients are ap-
proximated with PWA maps. A novel regularized moving-horizon algo-
rithm is devised for PWA regression based on mixed-integer program-
ming.

Furthermore, the framework of the proposed algorithm is applied
to the real-world problem of energy disaggregation where the goal is to
estimate the power consumption profiles of individual appliances by
using only the aggregated power measurements. The behavior of the
power consumption profiles of individual appliance is described using
PWA AutoRegressive (PWA-AR) models. The proposed PWA regres-
sion algorithm is used to estimate the device models using a short du-
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ration disaggregated training dataset. Once the device models are esti-
mated, energy disaggregation is performed by solving a binary quadratic
programming problem. The dynamic PWA-AR modeling of the appli-
ances significantly improves the estimation of power consumption pro-
files compared to the approaches relying on static models.

4.1 Introduction

4.1.1 Motivation

PieceWise Affine (PWA) models are heterogeneous systems which exhibit
both continuous and discrete dynamics. PWA models are simple and
flexible model structures and thanks to their universal approximation
properties, any nonlinear function can be modeled with arbitrary accu-
racy by a PWA map [16]. These aspects make PWA functions an attrac-
tive model class for nonlinear regression and black-box identification of
nonlinear and LPV dynamical systems. Furthermore, due to the equiv-
alence between PWA models and several classes of hybrid models [40],
available tools for modeling, analysis and control of hybrid systems can
be also applied to PWA systems [11; 13].

PWA regression is an NP-hard problem [50], where both the regressor
space partition and the submodel parameters have to be estimated from
a set of training data. Several algorithms/heuristics for PWA regression
and for the identification of hybrid systems, have been proposed in the
last two decades (see the survey papers [35; 73]). Among these algo-
rithms, we mention the set-membership approaches [12; 71], the sparse-
optimization based approaches [7; 70] and the mixed-integer program-
ming method [83]. In the latter approach, the estimation of hinging-
hyperplane ARX models and piecewise affine Wiener models is formu-
lated as a mixed-integer linear or quadratic programming problem, and
then solved through a branch-and-bound algorithm. As the number of
integer variables is proportional to the number of modes and the num-
ber of training samples, the approach in [83] is limited to medium-scale
problems. The contributions [8; 12; 18; 19; 32; 45; 66] fall in the class
of cluster-based two-stage methods. At the first stage, the training sam-
ples are clustered by assigning each datapoint to a submodel according
to a certain criterion and, at the same time, the parameters of the affine
submodels are estimated. In the second stage, the polyhedral partition
of the regressor space is computed by linear separation techniques. Un-
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like the mixed-integer programming approach [83], which can be solved
for the global optimum, sub-optimal solutions are obtained by the afore-
mentioned two-stage methods.

4.1.2 Contribution

PWA regresion algorithm

We introduce a regularized moving-horizon PWA regression algorithm,
which can be seen as a mix between the mixed-integer programming
approach [83] and the cluster-based algorithm [19]. We show how the
presented method can be applied for the identification of discrete-time
multi-input multi-output LPV and PWA-AutoRegressive with eXoge-
nous input (PWA-ARX) models. Specifically, in the case of LPV models,
unknown LPV model coefficients are approximated by PWA maps, de-
fined over polyhedral partition of the scheduling variable space. In this
way, LPV model identification is recast into PWA regression problem and
PWA approximation of unknown LPV model coefficients along with the
polyhedral partition of the scheduling variable space is estimated via
proposed algorithm.

The key idea of the proposed two-stage moving horizon PWA re-
gression algorithm can be summarized as follows: At the first stage, a
Mixed-Integer Quadratic-Programming (MIQP) problem is formulated to
compute both the optimal sequence of active modes within the consid-
ered horizon as well as the parameters of the affine sub-models. More-
over, a regularization term is included in the cost of the formulated MIQP
problem, to exploit the information from the past training samples out-
side the considered time window. Thus, the length Np of the horizon
acts as a knob to combine the advantages of the two-stage algorithm [19]
(namely, computational efficiency and iterative processing of the train-
ing samples) and the advantages of the mixed-integer programming ap-
proach [83] (namely, non-decoupled optimization over the active modes
and the sub-model parameters). According to a moving-horizon strat-
egy, only the active mode at current sampling time is extracted from
the computed optimal sequence of active modes, and the next training
sample is processed by shifting forward the estimation horizon. At the
second stage, the regressor space is partitioned using computationally
efficient multi-class linear separation methods proposed in [19].
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Application to energy disaggregation problem

The proposed two-stage moving-horizon algorithm for PWA regression
is employed for the energy disaggregation problem. The energy disag-
gregation problem is to estimate the power consumption profile of each
device based on aggregated power measurements. We propose a novel
approach that relies on PieceWise Affine AutoRegressive (PWA-AR) dy-
namical models to describe the behavior of the individual appliances’
power consumption patterns. Using a set of disaggregated data col-
lected over a short intrusive period, the PWA-AR models are first esti-
mated off-line using the proposed moving-horizon PWA regression al-
gorithm. Once the appliance models are estimated, energy disaggrega-
tion is formulated as a binary quadratic programming problem. Specif-
ically, based on the measurements of the aggregated power, the active
operating mode of each appliance (and thus its power consumption) is
determined at each time instance in an iterative way. The developed dis-
aggregation algorithm is tested on a real world benchmark dataset. For
comparison, an approach relying on static models (i.e., models defined
based on the average power ratings of the devices) is also tested using
the same dataset. The obtained results show that the proposed approach
with dynamic PWA-AR models describing power consumption of indi-
vidual appliances significantly improves the performance compared to
the approach relying on static models.

4.1.3 Outline

The chapter is organized as follows: In Section 4.2, the identification
of PWA-ARX and LPV-ARX models is formulated as a PWA regression
problem. The proposed moving-horizon PWA regression algorithm is
described in Section 4.3. The identification results for PWA-ARX and
LPV-ARX models are reported in Section 4.4.

In the appendix of the chapter, the framework of the proposed algo-
rithm is applied for energy disaggregation problem described in Section
4.6.1. In Section 4.6.4, we formally state the problem of energy disag-
gregation and present the proposed approach in Section 4.6.5. Specifi-
cally, we briefly explain the moving-horizon PWA regression algorithm
for estimating individual appliance models in Section 4.6.6, the binary
quadratic programming formulation to perform energy disaggregation
in Section 4.6.7. Tests on benchmark data set are discussed in Section 4.6.8.
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4.2 Problem formulation

Let us consider a data-generating system in the form

y(k) = fo(x(k)) + eo(k), (4.1)

where k ∈ N is the time index, y(k) ∈ Rny is the measured output at time
k, eo(k) ∈ Rny is an additive random noise, x(k) ∈ Rnx is the regressor
vector which is assumed to take values in a set X ⊂ Rnx , and fo : X →
Rny is an unknown and possible discontinuous function.

In this chapter, we address a PWA regression problem, which amounts
to computing a PWA function f : X → Rny approximating the regres-
sion function fo based on a set ofN observations of the regressor/output
pairs {x(k), y(k)}Nk=1. The PWA vector-valued function f is described as:

f(x) =


Θ1 [ 1

x ] if x ∈ X1,
...
Θs [ 1

x ] if x ∈ Xs,
(4.2)

where s ∈ N denotes the number of modes, Θi ∈ Rny×(nx+1) are param-
eter matrices, and Xi, with i = 1, . . . , s, are polyhedra (Hix ≤ Di) that
form a complete polyhedral partition1 of the regressor space X.

Estimation of the PWA function f in (4.2) thus requires: (i) selecting
the number of modes s; (ii) estimating the parameter matrices Θi; and
(iii) finding the polyhedra Xi (i.e., the matrices Hi and Di) defining the
partition of the regressor space X . Tradeoff between data fitting and mo-
del complexity should be taken into account while choosing the number
of modes s. If the number of modes s is small, then the PWA map f may
not be flexible enough to capture the shape of the underlying nonlinear
data-generating function fo (4.1). On the contrary, considering the high
number of modes results in a more accurate description of the PWA map
f with more degrees of freedom. However, this may cause overfitting
and poor generalization to unseen data (not used in the training phase)
as the final estimate is sensitive to the noise corrupting the observations,
besides increasing the complexity of the estimation procedure and of the
resulting PWA model. Here, we assume that s is fixed by the user, and
chosen via cross-calibration. This is done by evaluating the performance
of the estimated model for different values of s, on a fresh data set which
is different from the training data set.

1A collection {Xi}si=1 is a complete partition of the regressor domainX if
⋃s
i=1 Xi = X

and
◦
Xi ∩

◦
Xj = ∅, ∀i 6= j, with

◦
Xi denoting the interior of Xi.
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4.2.1 Identification of PWA-ARX models

The model (4.2) represents discrete-time PWA-ARX dynamical systems if
the regressor vector x(k) is defined by the collection of past values inputs
and outputs, i.e.,

x(k) =
[
y>(k − 1) . . . y>(k − na) u>(k − 1) . . . u>(k − nb)

]>
where, y(k) ∈ Rny and u(k) ∈ Rnu are measured output and input sig-
nals at time k respectively.

4.2.2 Identification of LPV-ARX models

The model (4.2) can represent the LPV-ARX model structure if the schedul-
ing variable dependent LPV model coefficients are approximated by PWA
functions. The scheduling-variable space is partitioned into polyedral
regions, where each region is assigned to a PWA function describing the
local affine dependence of the underlying LPV model coefficients on the
scheduling variable.

In this section, we formulate the LPV system identification problem in
terms of PWA regression. Let us consider the LPV-ARX model structure

y(k) = a0(p(k)) +

na∑
j=1

aj(p(k))y(k − j) +

nb∑
j=1

aj+na(p(k))u(k − j) (4.3)

where p(k) ∈ P ⊆ Rnp is the measurement of the scheduling signal at
time k, u(k) ∈ Rnu and y(k) ∈ Rny are the model input and output
vectors, respectively.

Each coefficient function aj(p) is parametrized by the PWA map:

aj(p) =


Θ0

1,j +
np∑
h=1

Θh
1,jph if p ∈ P1,

...

Θ0
s,j +

np∑
h=1

Θh
s,jph if p ∈ Ps,

(4.4)

where ph denotes the h-th element of scheduling vector p, number of
modes are denoted by s ∈ N , (i.e., the number of affine local functions
defining aj), Θh

i,j (h = 1, . . . np) are parameter matrices of proper dimen-
sion, and Pi, with i = 1, . . . , s, are polyhedra that form a complete poly-
hedral partition of the scheduling-variable domain P.

98



In order to introduce flexibility in the LPV model (4.3)–(4.4), the poly-
hedral partition {Pi}si=1 is not fixed a priori and will be directly recon-
structed from data. This represents one of the main advantages with
respect to widely used parametric LPV identification approaches which
need parameterization of aj(p(k)) as a linear combination of some known
basis functions (e.g. polynomial functions).

Let us now stack the parameter matrices as:

Θi =
[
Θ0
i,0 · · · Θ

np
i,0 · · · Θ0

i,na+nb
· · · Θ

np
i,na+nb

]
, (4.5)

for all modes i = 1, . . . , s, and let us introduce the regressor vector x(k)

x(k) =



1
y(k − 1)

...
y(k − na)
u(k − 1)

...
u(k − nb)


⊗
[

1
p(k)

]
, (4.6)

where⊗ denotes the Kronecker product. Substituting (4.4) into (4.3), and
based on the above notation, the LPV model (4.3) can be written in the
compact PWA-LPV form

y(k) =


Θ1x(k) if p(k) ∈ P1,
...
Θsx(k) if p(k) ∈ Ps.

(4.7)

Thus, the LPV-ARX model identification has been recasted into the
PWA regression problem. The estimation of the PWA-LPV model (4.7)
consists of, (i) estimation of the model parameter matrices Θi and (ii)
computation of the polyhedra Pi defining the partition of the scheduling
variable space P .

Remark: In the rest of the chapter, for the sake of uniformity, with
a slight abuse of notation, we denote the polyhedral partition of the
scheduling space by X (i.e. by the notation used to define the polyhedral
partition of the regressor space, introduced to define the model (4.2)),
instead of P . It should be clear from the context that for LPV models,
polyhedra Pi are computed defining the partition of the scheduling vari-
able space P , where each scheduling vector p(k) at time k is assigned to
a specific partition Pi.
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4.3 PWA regression algorithm

The developed algorithm for PWA regression consists of the following
two stages:

S1. Recursive estimation of the model parameters Θi and simultaneous
clustering of the regressors {x(k)}Nk=1.

S2. Computation of a polyhedral partition of the regressor space X using
computationally efficient multi-category linear separation methods
already available in the literature. This can be computed either of-
fline or online (recursively) and is executed after S1.

4.3.1 Recursive clustering and parameter estimation

Stage S1 is carried out through a regularized moving-horizon identifi-
cation algorithm. The training regressor/output pairs {x(k), y(k)} are
processed iteratively. At each time sample k, a moving-horizon window
of length Np containing regressor/output pairs from time k − Np + 1
to time k is considered. The model parameters Θi and the active mode
σ(k) ∈ {1, . . . , s} at time k (characterized by binary variables δ(k)) are
estimated simultaneously by solving the mixed-integer programming
problem:

min
{Θi}si=1

{δi(k−t)}
s,Np−1
i=1,t=0

s∑
i=1

Np−1∑
t=0

∥∥(y(k−t)−Θi

[
1

x(k−t)
])
δi(k−t)

∥∥2

2
(4.8a)

+

k−Np∑
t=1

∥∥y(t)−Θσ(t)

[
1
x(t)

]∥∥2

2
(4.8b)

+

Np−1∑
t=0

s∑
i=1

‖(x(k − t)−ci)δi(k − t)‖22 (4.8c)

s.t. δi(k−t)∈{0, 1},
s∑
i=1

δi(k−t)=1, t = 0, . . . , Np − 1. (4.8d)

The active mode σ(k) ∈ {1, . . . , s} represents the cluster Ci∗ (whose cen-
troid is denoted by ci∗ ) that the regressor x(k) is assigned to, and it is
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extracted from the optimizer of problem (4.8), i.e.,

σ(k) = i∗, with i∗ : δi∗(k) = 1. (4.9)

According to a moving-horizon estimation strategy, only the active mode
σ(k) at time k is kept, and the Np-length time window is shifted forward
to process the next pair {x(k+ 1), y(k+ 1)}. Problem (4.8) aims at search-
ing for the optimal sequence of active modes within the considered time
window and the model parameters Θi which best match the available
observations up to time k. Note that the term (4.8a) aims at finding both
the model parameters and the sequence of active modes {σ(t)}kt=k−Np+1

which best match the observations within the Np-step time horizon. The
term (4.8b) acts as a regularization term on the parameters Θi and it takes
into account the time history of the observations outside the considered
time window. More specifically, in (4.8b), the sequence of active modes
is not optimized from time 1 to time k−Np, but it is fixed to the estimates
{σ(t)}k−Npt=1 obtained from the previous iterations of the moving-horizon
estimation algorithm.

The sequence of active modes is optimized only within the consid-
ered time horizon in (4.8a) and in (4.8c). The term (4.8c) penalizes the
distance of the regressor x(k) vector (scheduling vector p(k), in case of
LPV models) from the centroid ci of the cluster Ci. Overall, the active
mode σ(k) is selected based on the trade-off between the fitting error
term (4.8a) and the penalty on the distance of the current regressor sam-
ple x(k) from the centroids of each clusters.

Increasing Np increases the information used to cluster the regressor
x(k) and to estimate the model parameters Θi. On the one hand, increas-
ingNp increases the number of binary decision variables δi in (4.8). Thus,
the length Np of the horizon provides a trade off between complexity of
the optimization problem (4.8), and accuracy in estimating the model pa-
rameters Θi and in clustering the regressor x(k).

Recursive update of the objective function

Note that, at a first glance, the regularization cost (4.8b) requires to
use, and thus to store, the whole time-history of observations up to time
k − Np (i.e., the sequence of regressor/output pairs {x(k), y(k)}k−Npk=1 ).
Nevertheless, once a new observation is available at time k, the term (4.8b)
can be recursively updated, as described in the following.
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Let us rewrite the regularization term (4.8b) as

k−Np∑
t=1

tr
((
y(t)−Θσ(t)

[
1
x(t)

]) (
y(t)−Θσ(t)

[
1
x(t)

])>)
=

tr

k−Np∑
t=1

Θσ(t)

[
1
x(t)

] [
1
x(t)

]>
Θ>σ(t)

−
2tr

k−Np∑
t=1

Θσ(t)

[
1
x(t)

]
y>(t)

+tr

k−Np∑
t=1

y(t)y>(t)

 , (4.10)

with tr(·) denoting the matrix trace. Let us now define the matrices

Hi(k −Np) =

k−Np∑
t=1

[
1
x(t)

] [
1
x(t)

]>
hi(t), (4.11a)

Fi(k −Np) =

k−Np∑
t=1

[
1
x(t)

]
y>(t)hi(t), (4.11b)

with hi(t) = 1, if σ(t) = i or hi(t) = 0, otherwise.

Substituting (4.11) into the cost (4.10), we can represent (4.8b) as

k−Np∑
t=1

∥∥y(t)−Θσ(t)

[
1
x(t)

]∥∥2

2
= tr

(
s∑
i=1

ΘiHi(k −Np)Θ>i

)

− 2tr

(
s∑
i=1

ΘiFi(k −Np)

)
+ tr

k−Np∑
t=1

y(t)y>(t)

 . (4.12)

Note that the matrices Hi(k − Np) and Fi(k − Np) can be recursively
computed as

Hi(k−Np) =Hi(k−Np−1) +
[ 1
x(k−Np)

] [ 1
x(k−Np)

]>
hi(k−Np), (4.13a)

Fi(k−Np) =Fi(k −Np−1) +
[ 1
x(k−Np)

]
y>(k−Np) hi(k−Np). (4.13b)

Thus, processing the observation {x(k), y(k)} just requires to update the
matrices Hi(k−Np − 1) and Fi(k−Np − 1) through (4.13), with no need
to store the time history of observations {x(k), y(k)}k−Np−1

t=1 .
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MIQP formulation
To reformulate (4.8) as an MIQP problem, let us define the vector

zi(k) ∈ Rny with δi(k) ∈ {0, 1} as

zi(k) =
(
y(k)−Θi

[
1

x(k)

])
δi(k). (4.14a)

Note that:

zi(k) =

{
y(k)−Θi

[
1

x(k)

]
if δi(k) = 1

0 if δi(k) = 0
(4.14b)

Let M and m be an arbitrary large (resp. small) upper (resp. lower)
bound of the elements of the vector y(k)−Θi

[
1

x(k)

]
,

m ≤ y(k)−Θi

[
1

x(k)

]
≤M. (4.14c)

Based on conditions (4.12) and (4.14), problem (4.8) can be equivalently
written as the MIQP problem

min
{Θi}si=1

{δi(k − t)}
s,Np−1
i=1,t=0

{zi(k − t)}
s,Np−1
i=1,t=0

Np−1∑
t=0

s∑
i=1

z2
i (k − t)+ (4.15a)

tr

(
s∑
i=1

ΘiHi(k−Np)Θ>i

)
−2tr

(
s∑
i=1

ΘiFi(k−Np)

)
, (4.15b)

+

Np−1∑
t=0

s∑
i=1

‖(x(k − t)−ci)δi(k − t)‖22 , (4.15c)

s.t. zi(k − t) ≤Mδi(k − t), (4.15d)
zi(k − t) ≥ mδi(k − t), (4.15e)

zi(k−t)≤ y(k−t)−Θi

[
1

x(k−t)
]
−m(1− δi(k−t)), (4.15f)

zi(k−t)≥ y(k−t)−Θi

[
1

x(k−t)
]
−M(1− δi(k−t)), (4.15g)

s∑
i=1

δi(k − t) = 1, t = 0, . . . , Np − 1, (4.15h)

δi(k − t) ∈ {0, 1}, i = 1, . . . , s, (4.15i)

To solve the MIQP problem (4.15), the accelerated dual gradient projec-
tion (GPAD) [75] coupled with Branch and Bound (B&B) method (GPAD-
B&B) [65] can be used.
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Summary and iterative refinement

The steps described so far for recursive clustering of the regressors
{x(k)}Nk=1 and for model parameters Θi estimation are summarized in
Algorithm 2. At the beginning of Algorithm 2, a mini-batch identifi-
cation problem is solved to estimate the sequence of active modes σ(t)

from time 1 up to time Np and to assign the regressor {x(t)}Npt=1 to the
cluster {Cσ(t)}

Np
t=1 (stages 2–6). Then, the observations {x(k), y(k)} are

processed iteratively. Besides updating the model parameters Θi at each
time k (stage 7.3), the active mode σ(k) is estimated (stages 7.4–7.6), the
regressor x(k) is consequently assigned to cluster Cσ(k) (stage 7.7) and
the cluster’s centroid cσ(k) is updated (step 7.8–7.9).

It is worth pointing out that, at the first iterations of Algorithm 2 (i.e.,
for k̄ � N ), the observations {x(t), y(t)}k̄t=1 may be wrongly classified,
as the learning phase is based on a “small” set of observations. An er-
ror in the classification of the pairs {x(t), y(t)}k̄t=1 (i.e., an incorrect es-
timate of the mode sequence {σ(t)}k̄t=1) also influences the estimate of
the active modes and of the model parameters Θi at the next time sam-
ples k > k̄, as the regularization cost (4.8b) depends on the estimated
sequence {σ(t)}k̄t=1. When working in a batch mode, the effect of the ini-
tial misclassification may be reduced by running Algorithm 2 multiple
times, including the sequences of active modes estimated at the previous
runs, in the regularization term (4.8b). More specifically, at the nq-th run
of Algorithm 2, the following cost is considered instead of (4.8a)–(4.8b):

s∑
i=1

Np−1∑
t=0

∥∥(y(k−t)−Θi

[
1

x(k−t)
])
δi(k−t)

∥∥2

2
+ (4.16a)

k−Np∑
t=1

∥∥y(t)−Θσ(t,nq)

[
1
x(t)

]∥∥2

2
+ (4.16b)

nq−1∑
q=1

λnq−q−1

N−Np∑
t=1

∥∥y(t)−Θσ(t,q)

[
1
x(t)

]∥∥2

2
, (4.16c)

Np−1∑
t=0

s∑
i=1

‖(x(k − t)−ci)δi(k − t)‖22 , (4.16d)

with σ(t, q) (q = 1, . . . , nq) being the estimate of the active mode at time
t obtained at the q-th run of Algorithm 2. Note that (4.16c) is a regular-
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ization term based on the past runs of Algorithm 2, while (4.16b) plays
the same role of (4.8b), as it regularizes the parameters Θi based on the
estimate {σ(t)}k−Npt=1 obtained at the current run of Algorithm 2. The in-
fluence of the past runs of Algorithm 2 is controlled by including a for-
getting factor λ ∈ R : 0 < λ ≤ 1 in (4.16c), which exponentially down-
weights the estimates {σ(t, q)}Nt=1 obtained at the previous runs.

Similar to the original regularization term (4.8b), the cost (4.16b)–
(4.16c) can be also recursively updated as a new sample {x(k), y(k)} is
processed, without the need to store the whole time history of estimates
{σ(k, q)}N,nq−1

k=1,q=1 obtained at the previous runs of Algorithm 2. As a mat-
ter of fact, the terms (4.16b)–(4.16c) can be written as{

tr

(
s∑
i=1

ΘiHi(k −Np, nq)Θ>i

)
− (4.17a)

2tr

(
s∑
i=1

ΘiFi(k −Np, nq)

)
+ (4.17b)

tr

k−Np∑
t=1

y(t)y>(t)

+ (4.17c)

nq−1∑
q=1

tr

(
s∑
i=1

Θiλ
nq−q−1Hi(N −Np, q)Θ>i

)
− (4.17d)

2

nq−1∑
q=1

tr

(
s∑
i=1

Θiλ
nq−q−1Fi(N −Np, q)

)
+ (4.17e)

nq−1∑
q=1

tr

λnq−q−1

N−Np∑
t=1

y(t)y>(t)

 , (4.17f)

where Hi(N −Np, q) and Fi(N −Np, q) (q = 1, . . . , nq) are defined simi-
larly to (4.11) and computed based on the estimates σ(t, q) computed at
the q-th run of Algorithm 2. Specifically,

Hi(N −Np, q) =

N−Np∑
t=1

[
1
x(t)

] [
1
x(t)

]>
hi(t, q),

Fi(N −Np, q) =

N−Np∑
t=1

[
1
x(t)

]
y>(t)hi(t, q),
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with hi(t, q) = 0, if σ(t, q) = i or hi(t, q) = 1, otherwise.

When the pair {x(k), y(k)} is processed, the matrices Hi(k −Np, nq) and
Fi(k−Np, nq) in (4.17a)–(4.17b) can be recursively updated through (4.13),
while only the matrices Hi(N − Np, q) and Fi(N − Np, q) (with q =
1, . . . , nq − 1) are needed to construct the terms (4.17d)–(4.17e).

4.3.2 Construction of the state partition

The partition {Xi}si=1 of the regressor spaceX (or the scheduling variable
space) can be found along with the estimation of the model parameters
{Θi}si=1 and the sequence of active modes {σ(k)}Nk=1. This is done by
separating the computed clusters {Ci}si=1 using linear multicategory dis-
crimination.

In the following subsection, we briefly describe the algorithms re-
cently presented in [19], which are suited both for offline and online (i.e.,
recursive) computation of the state partition.

Linear multicategory discrimination: problem formulation
According to the formulation introduced in [14], the linear multicate-

gory discrimination problem is tackled by searching for a convex piece-
wise affine separator function φ : Rnx → R discriminating between the
clusters C1, . . . , Cs. The separator function φ is defined as

φ(x) = max
i=1,...,s

(
[ x′ −1 ]

[
ωi

γi

])
, (4.19)

where ωi ∈ Rnx and γi ∈ R are the parameters to be computed. Let
mi denote the cardinality of the cluster Ci and let Mi ∈ Rmi×nx , for i =
1, . . . , s, which is obtained by stacking the regressors x>(k) belonging to
Ci in its rows.

If the clusters {Ci}si=1 are linearly separable, then the separator func-
tion φ satisfies the following conditions:

[
Mi −1mi

] [
ωi

γi

]
≥
[
Mi −1mi

] [
ωj

γj

]
+ 1mi , i, j = 1, . . . , s, i 6= j,

(4.20)

where 1mi is an mi-dimensional vector of ones.
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The piecewise-affine separator φ thus satisfies the conditions:
φ(x) = [x′ − 1]

[
ωi

γi

]
, ∀x ∈ Ci, i = 1, . . . , s

φ(x) ≥ [x′ − 1]
[
ωj

γj

]
+ 1, ∀x ∈ Ci, i 6= j

(4.21)

From (4.21), the polyhedra {Xi}si=1 are defined as

Xi =
{
x ∈ Rnx : [x′ −1]

[
ωi−ωj
γi−γj

]
≥1, j=1, . . . , s, j 6= i

}
.

Off-line multicategory discrimination
The parameters {ωi, γi}si=1 are calculated by solving the optimization

problem which is convex [19] (instead of solving a robust linear program-
ming (RLP) problem as in [14]),

min
ξ

κ

2

s∑
i=1

(
‖ωi‖22 + (γi)2

)
+

s∑
i=1

s∑
j = 1
j 6= i

1

mi

∥∥∥∥([Mi −1mi ]
[
ωj−ωi
γj−γi

]
+ 1mi

)
+

∥∥∥∥2

2

, (4.22)

with ξ = [ (ω1)> ... (ωs)> γ1 ... γs ]
>. Problem (4.22) minimizes the aver-

aged squared 2-norm of the violation of the inequalities in (4.20). The reg-
ularization parameter κ > 0 guarantees that the objective function (4.22)
is strongly convex. Problem (4.22) is then solved through the Regularized
Piecewise-Smooth Newton (RPSN) method explained in [19] and originally
proposed in [10].

Recursive multicategory discrimination
An online approach can be used, either in place of the off-line ap-

proach or to refine the partition φ online based on streaming data. A
recursive approach using on-line convex programming can be used to
solve (4.22).

Considering the data-points x ∈ Rnx as random vectors and let us
assume that there exists an oracle function i : Rnx :→ {1, . . . , s} that
assigns the corresponding mode i(x) ∈ {1, . . . , s} to a given x ∈ Rnx . By
definition, function i describes the clusters in the data-point space Rnx .
Let us also assume that the following probabilities

πi = Prob[i(x) = i] =

∫
Rnx

δ(i, i(x))p(x)dx,
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are known for all i = 1, . . . , s, where δ(i, j) = 1 if i = j, zero otherwise.
Problem (4.22) can be the generalized as the following convex regular-
ized stochastic optimization problem

ξ∗ = min
ξ
Ex∈Rnx [`(x, ξ)] +

κ

2
‖ξ‖22 (4.23)

`(x, ξ) =

s∑
j = 1
j 6= i(x)

1

πi(x)

(
x>(ωj − ωi(x))− γj + γi(x) + 1

)2

+
,

where Ex [·] denotes the expected value w.r.t. x. Problem (4.23) aims at
violating the least, on average over x, the condition in (4.20) for i = i(x).
The coefficients πi can be estimated offline from a data subset, specifi-
cally πi = mi

N , and can be updated iteratively. Nevertheless, numerical
experiments have shown that uniform coefficients π = 1

s work equally
well. Problem (4.23) can be solved online using convex optimization al-
gorithm, Averaged Stochastic Gradient Descent (ASGD) method described
in [19].

To summarize, the proposed PWA regression algorithm consists of the
following two stages.

• At the first stage, the training samples are processed iteratively, and
a Mixed-Integer Quadratic-Programming (MIQP) problem is solved to
find the sequence of active modes and the model parameters which
best match the training data, within a relatively short time window
in the past. According to a moving-horizon strategy, only the last
element of the optimal sequence of active modes is kept, and the
next sample is processed by shifting forward the estimation hori-
zon. A regularization term on the model parameters is included
in the cost of the formulated MIQP problem, to partly take into ac-
count also the past training data outside the considered time hori-
zon.

• At the second stage, linear multi-category discrimination techniques
are used to compute a polyhedral partition of the regressor space
based on the estimated sequence of active modes.
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4.4 Simulation examples

In this section, the performance of the proposed PWA regression algo-
rithm is shown via identification of PWA-ARX and LPV models. The
output sequence used for training is corrupted by a zero mean white
Gaussian noise process eo. The Signal-to-Noise Ratio (SNR) index

SNR = 10 log

∑N
t=1(y(t)− eo(t))2∑N

t=1(eo(t))2
, (4.24)

quantifies the effect of the measurement noise on the output. The quality
of the identified models is assessed on a noiseless validation dataset (not
used for training) through the Best Fit Rate (BFR) index

BFR = max

1−

√√√√∑Nval

k=1 (y(k)− ŷ(k))
2∑Nval

k=1 (y(k)− ȳ)
2
, 0

 , (4.25)

withNval being the length of the validation set and ŷ being the estimated
model output and ȳ the sample mean of the output signal. All the simu-
lations are carried out using a desktop computer with MATLAB R2015a,
Intel Core i7-4700MQ CPU with 2.40 GHz and 8 GB of RAM.

4.4.1 Identification of PWA-ARX models

SISO case

As a first example, we consider a single-input single-output (SISO) PWA-
ARX system for the data generation, described by the difference equation

y(k) =0.8y(k−1) + 0.4u(k−1)− 0.1 + max {−0.3y(k−1)

+0.6u(k−1) + 0.3, 0}+ eo(k),

with s̄ = 2 modes, based on the possible combinations generated by the
sign of the “max” operator. To gather the data, the system is excited by an
input u(k) which is chosen to be white noise with uniform distribution
U(−1, 1) and length N = 1000, eo(k) ∈ R is a zero-mean white Gaussian
noise with variance σ2

e = 6.25 · 10−4. This corresponds to a SNR on the
output channel equal to 20 dB.

For identification, Algorithm 2 is run for 3 iterations (i.e. nq = 3)
with s = s̄ = 2 and with prediction horizon Np = 5, forgetting factor
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λ = 0.01. In (4.8), the terms (4.8a) and (4.8b) are weighted by factors
γ1 = 10, γ2 = 1 respectively. The resultant MIQP problem (4.15) consists
of 26 variables out of which 10 are binary, 40 inequality and 5 equal-
ity constraints. The MIQP problem is solved with the recently proposed
GPAD-B&B algorithm [65] and the performance is compared with the
commercial solver GUROBI. In the second stage, off-line multicategory
discrimination algorithm (Section 4.3.2) is executed for the partitioning
of the regressor space, with parameter κ = 10−5. The BFR on the noise-
free validation data-set of length Nval = 300 are summarized in Table 11.
The mean time taken to process a single training sample by GPAD-B&B

Table 11: BFR on the validation data set for SISO PWARX system.

runs(nq) GUROBI GPAD-B&B
1 0.86 0.86
2 0.90 0.89
3 0.92 0.90

is 0.13 sec with the feasibility tolerance εG = 1 · 10−3, optimality toler-
ance εV =1 · 10−3, infeasibility detection tolerance εI=1 · 10−3, whereas
GUROBI with default settings takes 0.09 sec. GPAD-B&B makes a trade
off between the execution time and quality of solution, by selecting ap-
propriate tolerance values. It is simple library-free solver, yet rendered
comparable performance with respect to the commercial solver for the
given problem. The effect of increasing the prediction horizon Np on the

5 10 15 20 25
0.80

0.85

0.90

0.95

1.00

Np

BF
R

Figure 12: BFR vs Np : nq = 1, nq = 2, nq = 3.

BFR is shown in Figure 12, for nq = 1, 2 and 3 runs respectively.
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MIMO case

As a second example, the following Multiple-Input Multiple-Output (MIMO)
PWA-ARX data generating system, taken from [18], is considered

[
y1(k)
y2(k)

]
=

[
−0.83 0.20
0.30 −0.52

] [
y1(k−1)
y2(k−1)

]
+

[
−0.34 0.45
−0.30 0.24

] [
u1(k−1)
u2(k−1)

]
+

[
0.20
0.15

]
+ max

{[
0.20 −0.90
0.10 −0.42

] [
y1(k−1)
y2(k−1)

]
+

[
0.42 0.20
0.50 0.64

] [
u1(k−1)
u2(k−1)

]
+

[
0.40
0.30

]
,

[
0
0

]}
+ eo(k),

described by s̄ = 4 modes, based on the possible combinations generated
by the sign of the vector-valued “max” operator. To gather the data, the
input sequence u(k) is chosen to be a white noise process of length N =
3000, having uniform distribution in the boxes [−2 2]× [−2 2]. The noise
signal eo ∈ R2 is a white Gaussian noise with covariance matrix Λe =[
2.5 · 10−3 0

0 2.5 · 10−3

]
. This results in SNRs equal to 27 dB and 26 dB for

the first and the second output channel, respectively.

Algorithm 2 is run for one iteration (i.e. nq = 1) with s = s̄ = 4 and
with a prediction horizon Np = 10. GUROBI is used to solve the MIQP
problem (4.15). In the second stage, off-line multicategory discrimination
algorithm (reported in Section 4.3.2) is run with parameter κ = 10−5, for
the partitioning of the regressor space.
The achieved results in terms of BFR for output channel 1 and 2 on a
noise-free validation data set of length Nval = 500 are reported in Ta-
ble 12.

Table 12: BFRs on the validation data set for MIMO PWARX system.

Output channel BFR
y1 0.95
y2 0.94
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4.4.2 Identification of LPV models

SISO LPV model

Consider the SISO-LPV ARX data generating system:

y(k) = ao
1(p(k))y(k − 1) + ao

2(p(k))y(k − 2) + bo1(p(k))u(k − 1) + eo(k).

The p-dependent coefficients ao
1(p(k)), ao

2(p(k) and bo1(p(k)) are described
by the nonlinear functions:

ao
1(p(k)) =


−0.5, if p(k) > 0.5

−p(k), if − 0.5 ≤ p(k) ≤ 0.5

0.5, if p(k) < −0.5

(4.26a)

ao
2(p(k)) = p3(k) (4.26b)
bo1(p(k)) = sin(πp(k)) (4.26c)

A training data and a validation dataset of length N = 6000 and Nval =
2000, respectively, are generated. The training input u and the schedul-
ing signal p are considered as independent white-noise processes with
uniform distribution U(−1, 1). The standard deviation of the noise e is
0.05, which corresponds to SNR of 20 dB.

A PWA model with s = 6 modes is considered. Algorithm 2 is run
with prediction horizon Np = 6. Each MIQP sub-problem (4.15), solved
with GPAD-B&B, contains 36 binary and 72 continuous variables, 144
inequality and 6 equality constraints. The average time to solve this
problem is 0.13 sec for GPAD-B&B and 0.09 sec for GUROBI with de-
fault settings. In the second stage, off-line multicategory discrimination
algorithm is executed for partitioning the scheduling space, and the es-
timated model parameters are refined based on the computed partition,
using simple least-squares for each sub-model.

The best fit rate on the noise-free validation dataset is 0.95. The es-
timated LPV model coefficient functions a1(p(k)), a2(p(k)), b1(p(k)) are
shown in Figure 13.

112



-1 -0.5 0 0.5 1
-1

0

1

true
estimated

-1 -0.5 0 0.5 1
-1

0

1

true
estimated

-1 -0.5 0 0.5 1
-1

0

1

true
estimated

Figure 13: PWA estimates of the LPV coefficient functions

MIMO LPV models

Consider the MIMO LPV-ARX data generating system:

[
y1(k)
y2(k)

]
=

[
ā1,1(p(k)) ā1,2(p(k))
ā2,1(p(k)) ā2,2(p(k))

] [
y1(k − 1)
y2(k − 1)

]
+

[
b̄1,1(p(k)) b̄1,2(p(k))
b̄2,1(p(k)) b̄2,2(p(k))

] [
u1(k − 1)
u2(k − 1)

]
+ e(k), (4.27)
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with

ā1,1(p(k)) =

 −0.3 if 0.4 (p1(k) + p2(k)) ≤ −0.3,
0.3 if 0.4 (p1(k) + p2(k)) ≥ 0.3,
0.4 (p1(k) + p2(k)) otherwise,

ā1,2(p(k)) = 0.5 (|p1(k)|+ |p2(k)|) ,
ā2,1(p(k)) = p1(k)− p2(k),

ā2,2(p(k)) =

 0.5 if p1(k) < 0,
0 if p1(k) = 0,

−0.5 if p1(k) > 0,

b̄1,1(p(k)) = 3p1(k) + p2(k),

b̄1,2(p(k)) =

{
0.5 if 2

(
p2

1(k) + p2
2(k)

)
≥ 0.5,

2
(
p2

1(k) + p2
2(k)

)
otherwise,

b̄2,1(p(k)) = 2 sin {p1(k)− p2(k)} ,
b̄2,2(p(k)) = 0.

The training and the validation dataset consist of N = 6000 and Nval =
2000 samples, respectively. The input u(k) and the scheduling vector p(k)
are white noise sequences generated drawn from a uniform distribution
in the range [−0.5 0.5] × [−0.5 0.5] and [−1 1] × [−1 1], respectively.
The covariance matrix of e(k) ∈ R2 is Λe =

[
0.25e−2 0

0 0.25e−2

]
which cor-

responds to signal-to-noise ratios on the first and on the second output
channel equal to SNR1 = 23 dB and SNR2 = 23.5 dB, respectively.

A PWA-LPV model with s = 10 modes is considered. Algorithm 2 is
run for nq = 2 iterations with the parameters: prediction horizon T = 10,
forgetting factor λ = 0.25.

In the second stage, problem (4.22) is solved to compute the parti-
tion of the scheduling space, with parameter κ = 10−10 in (4.22). The
obtained partition of the scheduling space is depicted in Figure 14. The
BFRs on the noise-free validation dataset are reported in Table 13 for both

Table 13: BFR on the validation data

runs(nq) BFR y1 BFR y2

1 0.8793 0.8108
2 0.8817 0.8146
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Figure 14: Partition of the scheduling space
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Figure 15: Estimated (black) vs true (red) outputs

the output channels, and the output trajectories are shown in Figure 15.
For the sake of visualization, only part of the validation data are plotted.
The obtained results show the capabilities of the estimated PWA-LPV
model in reproducing the behaviour of the true LPV system.
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4.5 Conclusions

A novel moving-horizon algorithm for PieceWise Affine regression has
been described in this chapter. The proposed method combines the ad-
vantages of the mixed-integer programming method [83] (namely, simul-
taneous choice of the model parameters and of the optimal sequence of
active modes within a relatively short time horizon) and the recursive
algorithm [19] (namely, computational efficiency and iterative process-
ing of the training samples). The effectiveness of the proposed method is
tested via identification of LPV and PWA-ARX models.

In the appendix of the chapter, the framework of the proposed algo-
rithm is applied to real world energy disaggregation problem. A small
set of training data consisting of disaggregated power profiles for indi-
vidual appliances is used to estimate PWA autoregressive models de-
scribing the consumption patterns of individual appliances. Once the
model parameters are estimated for each appliance, the energy disaggre-
gation problem is formulated as a binary quadratic program. The dy-
namic modeling of the power profiles of individual appliances leads to
better energy disaggregation results compared to the same approach re-
lying on static models. This is due to the fact that the dynamic models are
able to capture the transient behavior, thus providing vital information
to distinguish between the appliances having similar power signatures.
The proposed energy disaggregation method is computationally efficient
as the appliance models can be estimated off-line only once, while energy
disaggregation is performed online with low computational complexity.
Thus, the approach proposed in this chapter is promising for embedded
implementation in smart meters.
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4.6 Appendix

4.6.1 Energy Disaggregation

In this section, we apply the framework of the proposed algorithm for
the problem of energy disaggregation commonly referred in the litera-
ture as non-intrusive load monitoring. The problem is to estimate the
end-use power consumption profiles of individual household appliance
using only aggregated power measurements. We propose a two-stage
supervised approach. At the first stage, dynamical models of individ-
ual appliances are estimated using disaggregated training data gathered
over a short intrusive period. The consumption profiles of individual ap-
pliances are described by PieceWise Affine AutoRegressive (PWA-AR) mod-
els with multiple operating modes, which are estimated via a moving
horizon PWA regression Algorithm 2. Once the model of each appliance
is identified, a binary quadratic programming problem is solved at the
second stage to determine the set of active appliances which contribute to
the instantaneous aggregated power, along with their operating modes.
A benchmark dataset is used to assess the performance of the presented
disaggregation approach.

4.6.2 Motivation

Retrieving power consumptions at the single-appliance level provides
useful information to energy suppliers, municipalities, and consumers to
design and assess efficiency of energy management strategies, increase
consumers’ awareness on their habits, detect malfunctioning, etc. One
can acquire this information via hardware, by attaching a smart meter
or a smart plug to every individual appliance. However, this is not
economical when there are many devices to monitor. Alternatively, a
software-based solution can be used to decompose the aggregate power
reading gathered from a single-point smart meter into the individual
consumption of each appliance. This approach is known as Non-Intrusive
Load Monitoring (NILM) or energy disaggregation. The advantages of the
software-based solution are reduction of intrusiveness into consumers’
houses and lower costs for installation, maintenance and replacement of
the monitoring system.

A first energy disaggregation algorithm was proposed by Hart in [39],
where the aggregate power signal is decomposed to match the individ-
ual appliances’ typical power demand curves (commonly referred to as
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signatures). The limitation of Hart’s approach is that it cannot detect ap-
pliances with multiple operating modes and it is neither able to decom-
pose power signals made of simultaneous on/off events on multiple ap-
pliances. Thereafter, the NILM problem has been extensively studied
in the literature (see [108], [113], [26] and references therein). The main
idea behind most of the available methods is to characterize the typical
consumption signatures of the appliances using a small set of disaggre-
gated data gathered during a short intrusive period. Once the appli-
ances’ signatures are available, disaggregation is performed. Among the
available approaches, we mention the ones based on sparse coding [33],
blind identification [28], pattern recognition [30], hidden Markov mod-
els and its variants [44; 46; 74], deep learning [85; 92], integer program-
ming [21; 94], and convex optimization [77].

4.6.3 Contribution

We propose a novel approach for energy disaggregation that relies on
PieceWise Affine AutoRegressive (PWA-AR) dynamical models to describe
the behavior of the individual appliances. Using a set of disaggregated
data collected over a short intrusive period, the PWA-AR models are
first estimated off-line using the moving-horizon PWA regression Algo-
rithm 2. Once the appliance models are estimated, energy disaggregation
is formulated as an integer programming problem. Specifically, based on
the measurements of the aggregated power, the active operating mode of
each appliance (and thus its power consumption) is determined at each
time instance in an iterative way. The developed disaggregation algo-
rithm is tested on a benchmark dataset, using PWA-AR dynamic models
and also static models defined based on the average power ratings of the
devices. The obtained results show that using dynamic models for the
individual appliances instead of static models significantly improves the
performance.

4.6.4 Problem formulation

Consider a household with n different electric appliances connected to
the power line. The energy consumption of each appliance is described
by PieceWise Affine AutoRegressive (PWA-AR) model with si ∈ N (with i =
1, . . . , n) operating modes. Although the appliances may have different
operating modes, to simplify the notation we consider the case in which
all appliances have equal number of operating modes s ∈ N described
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by PWA-AR models having the same dynamical order na ∈ N. More
specifically, the power yi(k) consumed by the i-th appliance at time k is
modeled by

yi(k) =


Θi,1

[
1

xi(k)

]
if δi,1(k) = 1,
...

Θi,s

[
1

xi(k)

]
if δi,s(k) = 1,

(4.28)

where δi,j(k) ∈ {0, 1} (with j = 1, . . . , s) is a binary variable which is
used to characterize the active operating mode of the appliance (i.e., the
j-th mode is active if and only if δi,j(k) = 1), Θi,j is a set of parameters
describing the behavior of the i-th appliance at the j-th operating mode
and xi(k) denotes the regressor vector containing the past values of the
outputs

xi(k) = [yi(k − 1), . . . , yi(k − na)]
>
. (4.29)

At a given time k, one and only one mode of the appliance is active, i.e.,
s∑
j=1

δi,j(k) = 1. The measured aggregated power reading is

y(k) =

n∑
i=1

yi(k) + e(k), (4.30)

with e(k) taking into account the measurement noise and unmodeled
appliances.

Problem 1 (Energy disaggregation problem) Given an N -length data se-
quence D = {y(k)}Nk=1 of aggregated power signals y(k), estimate the end-use
power consumption profiles yi(k) (with, i = 1, . . . , n and k = 1, . . . , N ).

4.6.5 Energy disaggregation algorithm

We detail a supervised disaggregation algorithm which consists of two
stages:

S1. The PWA-AR model in (4.28) describing the behavior of individual
appliances is estimated via the PWA regression Algorithm 2, using
disaggregated training data collected over a short intrusive period.
It is a common practice to use a small set of disaggregated data to
learn the signature of the appliances [77; 108; 113].
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S2. Using the PWA-AR models obtained from stage S1, an integer pro-
gramming problem is solved iteratively to determine the active
devices contributing to the instantaneous total power, along with
their corresponding operating modes.

In the following sections, stages S1 and S2 are described in detail.

4.6.6 Stage S1: Training appliance models

For each appliance, consider a set of training data of length N̄ consisting
of the disaggregated power consumption {yi(k)}N̄k=1. The training re-
gressor/output pairs {xi(k), yi(k)}, with xi(k) defined in (4.29), are pro-
cessed iteratively. At each time sample k, a moving-horizon window of
length Np � N̄ containing regressor/output pairs from time k −Np + 1
to time k is considered. The model parameters Θi,j and the binary vari-
ables δi,j(k) (for j = 1, . . . , s) at time k are estimated simultaneously by
solving the mixed-integer quadratic programming problem (as given in
(4.8))

min
Θi,j

δi,j(k−t)

s∑
j=1

Np−1∑
t=0

∥∥(yi(k−t)−Θi,j

[
1

xi(k−t)
])
δi,j(k−t)

∥∥2

2
(4.31a)

+

k−Np∑
t=1

∥∥yi(t)−Θi,σ(t)

[
1

xi(t)

]∥∥2

2
(4.31b)

s.t. δi,j(k−t)∈{0, 1},
s∑
j=1

δi,j(k−t)=1, t=0, . . . , Np−1. (4.31c)

The objective of problem (4.31) is to determine the optimal sequence of
active modes

σi(k − t) = j∗ ⇔ δi,j∗(k − t) = 1, t = 0, . . . , Np − 1,

within the considered time window, along with the model parameters
Θi,j (for each appliance i and mode j), which best match the available
power consumption up to time k. The term (4.31b) is a regularization
term on the parameters Θi,j , which takes into account the past data out-
side the considered horizon. As described in Section 4.3, in (4.31b) the ac-
tive mode sequence is not optimized from time 1 to k−Np, but it is fixed
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to the estimates {σi(t)}
k−Np
t=1 computed from the previous iterations of

the moving-horizon estimation algorithm. In turn, the sequence of active
modes is optimized only within the considered time horizon in (4.31a).
At time k, only the active mode σi(k) is kept, and the Np-length time
window is shifted forward to process the next pair {xi(k + 1), yi(k + 1)}
in a moving-horizon fashion. Increasing Np provides more data to esti-
mate the model parameters Θi,j and the sequence of active modes σi(k),
which improves the accuracy of the estimates. On the other hand, in-
creasing Np increases the number of binary decision variables δi,j . Thus,
the parameter Np acts as a tuning knob to trade off accuracy vs complex-
ity.

At the end of the training phase, the signature of the i-th appliance
is captured by the estimated model parameters Θi,j for all modes j =
1, . . . , s.

4.6.7 Stage S2: Energy disaggregation

Once the model parameters Θi,j for each appliance are estimated, the
energy disaggregation problem is to determine the operating mode of
each appliance based on aggregated power measurements. To this end
we solve the following binary quadratic program

min
{δi,j(k)}n,si,j=1

∥∥∥∥∥∥y(k)−
n∑
i=1

s∑
j=1

Θi,j

[
1

x̂i(k)

]
δi,j(k)

∥∥∥∥∥∥
2

2

, (4.32a)

s.t. δi,j(k) ∈ {0, 1},
s∑
j=1

δi,j(k) = 1, (4.32b)

at each time instance k, where y(k) is the measurement of the aggregated
power, Θi,j are model parameters estimated at stage S1, x̂i(k) is the sim-
ulated regressor vector2 defined as

x̂i(k) = [ŷi(k − 1), . . . , ŷi(k − na)]
>
,

where ŷi(k) is the estimate of the disaggregated power for the i-th appli-
ance constructed as follows.

2The true regressor xi(k) defined in (4.29) can not be constructed as it depends on the
past values of the individual appliance power yi which are not available at the stage S2.
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At each time instance k = 1, . . . , N the binary quadratic program
(4.32) is solved iteratively using an estimate x̂i(k) of the regressor ob-
tained from the previous iterations. Specifically, at each iteration k the
active operating mode j∗ of each appliance is determined by the solu-
tion of problem (4.32), namely

j∗ : δi,j∗(k) = 1.

The power of each individual appliance is thus given by

ŷi(k) = Θi,j∗
[

1
x̂i(k)

]
, (4.33)

which is used to construct the regressor x̂i(k + 1).

4.6.8 Application to real data

The proposed disaggregation algorithm is tested on a benchmark AM-
Pds dataset [56], which consists of power consumptions of 19 appliances
monitored from April 1, 2012 to March 31, 2013 at one minute read inter-
vals in a house located in Canada. In our analysis we consider only the
aggregate power consumption given by the sum of the power consump-
tion readings of the following three electric appliances: 1) fridge (FGE);
2) dish washer (DWE); 3) heat pump (HPE). Moreover, for a realistic sce-
nario the aggregated power is corrupted by a fictitious white noise e(k)
with Gaussian distribution N (0, σ2

e ) having standard deviation σe = 4
W.

The computations are carried out on an Intel i5 1.7 GHz running
MATLAB R2016b.

4.6.9 Performance measures

The quality of the energy disaggregation results is assessed via the fol-
lowing performance measures [77]:

1. Energy Fraction Index (EFI)
The EFI index

ĥi =

∑N
k=1 ŷi(k)∑n

i=1

∑N
k=1 ŷi(k)

quantifies the estimated fraction of total energy consumed by the
i − th appliance. This index provides an important information to
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the user for potential savings. In order to asses the effectiveness
of the algorithm the index ĥi is compared with an analogous index
defined based on the actual disaggregated profiles, namely

hi =

∑N
k=1 yi(k)∑n

i=1

∑N
k=1 yi(k)

.

We remark that the true disaggregated power profiles yi are not
used in the disaggregation algorithm (stage S2) but only to evalu-
ate estimation performance.

2. Relative Square Error (RSE) and R2 coefficient
The normalized error between the actual and the estimated power
consumption is quantified for the i-th appliance by the RSEi index
defined as

RSEi =

∑N
k=1 (yi(k)− ŷi(k))

2∑N
k=1 y

2
i (k)

,

and the R2
i coefficient defined as

R2
i = 1−

∑N
k=1 (yi(k)− ŷi(k))

2∑N
k=1 (yi(k)− ȳi)2

,

with ȳi = 1
N

∑N
k=1 yi(k). Both RSEi and R2

i measure the match
between the actual and the estimated power profiles over time. In-
deed, low values of RSEi (or equivalently high values of R2

i ) im-
ply an accurate estimate of the index ĥi. A precise estimate of the
power consumption profiles gives the information to the consumer
about the use of household appliances over time. This is essen-
tial for potential power savings as well as monetary benefits as the
consumer can differ the use of some appliances to off-peak hours.

4.6.10 Supervised training phase

At stage S1, PWA-AR models (4.28) describing the behavior for each ap-
pliance are estimated as discussed in Section 4.6.6 using data of a one-day
(April 19, 2012) intrusive period. PWA-AR models with s = 3 modes
and order na = 2 are considered. The moving-horizon mixed-integer
quadratic programming problem (4.31) is solved with horizon length
Np = 5 using Gurobi [38]. The average computation time to solve (4.31)
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Figure 16: Supervised learning: True vs estimated power consumption.
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is 90 ms. The results of the training phase are reported in Figure 16,
which shows that the estimated PWA-AR models accurately capture the
behavior of the individual appliances’ power consumption profiles.

For comparison, the use of static device models for energy disaggre-
gation is reported in the next section. Static models are a special case of
PWA-AR models (4.28) with na = 0 and yi(k) = Θi,j . The parameter
Θi,j thus models the appliance power consumption at the j-th mode and
is chosen via simple visual inspection of the training data. The selected
values of the parameters Θi,j are

a. fridge: [Θ1,1 Θ1,2 Θ1,3] = [0 128 200] W;

b. dish washer: [Θ2,1 Θ2,2 Θ2,3] = [0 120 800] W;

c. heat pump: [Θ3,1 Θ3,2 Θ3,3] = [0 39 1900] W.

4.6.11 Energy disaggregation

Once the PWA-AR models of individual appliances are estimated, the
power measurements of one month (from 1st to 30th June, 2012) are dis-
aggregated by solving the binary quadratic program (4.32) iteratively us-
ing Gurobi. The average CPU time taken to solve problem (4.32) is 8 ms.

The results obtained by using PWA-AR models (estimated in stage
S1) and by using static models (introduced in Section 4.6.10), are re-
ported in Table 14 and Table 15. The disaggregated power consumption
profiles of fridge, dish washer and heat pump are shown in Figure 17,
Figure 18, and Figure 19, respectively.

For visualization purpose, only a portion of the disaggregated power
profiles is plotted in Figure 17, Figure 18, and Figure 19. From the fig-
ures, it can be seen that the proposed algorithm using PWA-AR models
accurately estimates the power consumption trajectories of each individ-
ual appliance over time. The efficiency of the method is also reflected in
the performance measures reported in Table 14 and Table 15.

We remark that for fridge and dish washer, the second operating
mode of both the appliances have similar static models with parameters
128 W and 120 W respectively. From the obtained results it can be ob-
served that using only static models it is difficult to distinguish between
these two devices. On the contrary, thanks to their dynamic nature PWA-
AR models are able to resolve such a conflict. Overall, PWA-AR models
outperform static models in the task of energy disaggregation.

125



1.622 1.624 1.626 1.628 1.63 1.632 1.634

104

0

100

200

300

400
Fridge Power Consumption (PWA-AR model)

1.622 1.624 1.626 1.628 1.63 1.632 1.634

104

0

100

200

300

400
Fridge Power Consumption (static model)

Figure 17: Disaggregated power consumption profile of fridge. Results ob-
tained using PWA-AR models and static models.
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Figure 18: Disaggregated power consumption profile of dish washer. Re-
sults obtained using PWA-AR models and static models.

127



1.905 1.91 1.915 1.92 1.925 1.93 1.935 1.94 1.945

104

0

1000

2000

3000
Heat pump power consumption (PWA-AR model)

1.905 1.91 1.915 1.92 1.925 1.93 1.935 1.94 1.945

104

0

1000

2000

3000
Heat pump power consumption (static model)

Figure 19: Disaggregated power consumption profile of heat pump. Results
obtained using PWA-AR models and static models.
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Table 14: Estimated Energy Fraction Index ĥi and Actual Energy Fraction
Index hi. Results obtained using PWA-AR models and static models.

PWA-AR models static models ground truth
ĥi ĥi hi

Fridge 29.9 % 20.7 % 31.0 %
Dish washer 9.3 % 16.6 % 7.4 %
Heat pump 60.8 % 62.7 % 61.6 %

Table 15: Relative Square Errors andR2 coefficients. Results obtained using
PWA-AR models and static models.

PWA-AR models static models
RSEi R2

i RSEi R2
i

Fridge 13.9 % 78.9 % 35.3 % 46.4 %
Dish washer 10.5 % 89.3 % 30.4 % 69.0 %
Heat pump 0.6 % 99.3 % 2.0 % 97.8 %
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Algorithm 2 Recursive clustering of the regressors and model parame-
ters estimation

Input: Observations sequence {x(k), y(k)}Nk=1; number of modes s;
horizon Np, initial clusters Ci and centroids ci.

1. let Hi(0)← 0, Fi(0)← 0, Ci ← ∅, i = 1, . . . , s;

2. let k ← Np;

3. solve the MIQP problem (4.15);

4. let {δ∗i (t)}s,Npi=1,t=1 be the optimal parameters minimizing (4.15);

5. for t = 1, . . . , Np do

5.1. let i∗(t) be the index such that δ∗i∗(t) = 1;

5.2. let σ(t)← i∗(t);

5.3. let Cσ(t) ← Cσ(t) ∪ {x(t)};

6. end for

7. for k = Np + 1, . . . , N do

7.1. update the matricesHi(k−Np) and Fi(k−Np) through (4.13);

7.2. solve the MIQP problem (4.15);

7.3. let Θ∗i (k) be the optimal solution of (4.15), i = 1, . . . , s;

7.4. let {δ∗i (k − t)}Np−1
t=0 be the optimal parameters minimiz-

ing (4.15), i = 1, . . . , s;

7.5. let i∗ be the index such that δ∗i∗(k) = 1;

7.6. let σ(k)← i∗;

7.7. let Cσ(k) ← Cσ(k) ∪ x(k);

7.8. let δcσ(k) ← 1

|Cσ(k)| (x(k)− cσ(k));

7.9. update the centroid cσ(k) of cluster Cσ(k) :
cσ(k) ← cσ(k) + δcσ(k);

8. end for;

Output: Estimated parameters Θ∗1(N), . . . ,Θ∗s(N); clusters C1, . . . , Cs;
sequence of active modes {σ(k)}Nk=1.
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Chapter 5

Identification of LPV
models with linear
fractional representation

This chapter presents a method for identification of Linear Parameter-
Varying (LPV) systems in Linear Fractional Representation (LFR) which cor-
responds to a Linear Time-Invariant (LTI) model connected to scheduling
variable dependent block via feedback. We propose a two stage identifi-
cation approach. In the first stage, Kernelized Canonical Correlation Analy-
sis (KCCA) is formulated to estimate the state sequence of the underlying
LPV model. In the second stage, a nonlinear least squares cost function is
minimized employing a coordinate descent algorithm to estimate latent
variables characterizing the LFRs and the unknown model matrices of
the LTI block by using the state estimates obtained from the first stage.
Here, it is assumed that the structure of the scheduling variable depen-
dent block in the feedback path is known. For a special case of affine
dependence of the model on the feedback block, it is shown that the op-
timization problem in the second stage reduces to ordinary least-squares
followed by a singular value decomposition.
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Figure 20: Linear fractional representations of LPV system

5.1 Introduction

5.1.1 Motivation

In the existing literature, many methods have been proposed for the
identification of LPV models, both in state-space (SS) [31; 95; 103; 107]
and input-output (IO) representations [9; 51; 60; 62]. A detailed summary
of the available LPV identification approaches can be found in [98].

The main drawback of these approaches is that the obtained models
are not well suited for controller synthesis. The controller design appro-
aches for LPV models ([86; 111]) often require the LPV models to be in
Linear Fractional Representation (LFR) depicted in Figure 20. Moreover,
motivated by the need to design controllers for many real world prob-
lems where uncertainty or scheduling parameters enter in a feedback
path, identification of LPV-LFR model structures is of significant practi-
cal importance. For such models, very efficient self-scheduled controllers
can be synthesized with low computational complexity [72].

Most of the methods available in the literature for the identification
LPV models assume input-output (for eg., the methods presented in the
previous chapters) or state space model structures and very few works
have addressed the problem of identifying LPV-LFR models. To mention
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a few, in [67], it is shown that under the assumption of full state measure-
ment, the problem of single input single output (SISO) LPV-LFR model
identification can be solved by recursive least-squares. A prediction er-
ror method is proposed in [52; 53], where the mean-squared prediction
error cost function is minimized using gradient and Hessian based non-
linear programming. In [24], a local identification approach is presented
for SISO LPV-LFR models with scalar scheduling variable. By suitably
manipulating the scheduling signal trajectory, it is shown that, for the
noise-free case, the model can be identified using convex optimization.
For noisy measurements, tractable convex relaxations are proposed un-
der the assumption that a bound on the measurement noise is known.

5.1.2 Contributions

In this chapter, we present a two-stage method which can be seen as a
step towards direct identification LPV models with LFRs without struc-
tural assumptions. The first stage consists of estimating the state se-
quence of the underlying LPV models using Kernel Canonical Correla-
tion Analysis (KCCA), which has been recently introduced for LPV-SS
models in [81]. It can be proved that the state of the LPV model is a
minimal interface between its past and future data. Using this fact, in a
KCCA approach, the correlation between past and future data samples
is maximized in order to estimate the state sequence up to a similarity
transformation. In the second stage, a nonlinear least squares cost func-
tion is minimized with coordinate descent algorithm to estimate the la-
tent variables z characterizing LFRs and the unknown model matrices
in the forward LTI part, using the state estimates obtained from the first
stage. It is shown that under the assumption of affine parametric depen-
dency and diagonal structure of the feedback block, the unknown LTI
model matrices can be computed using ordinary least square followed
by a singular value decomposition.

5.1.3 Outline

The chapter is organized as follows. In Section 5.1.4, notations used
throughout the chapter are introduced. The identification problem of lin-
ear fractional representations is formulated in Section 5.2. The proposed
method is described in Section 5.3. In Section 5.4, numerical examples
are reported to show the effectiveness of the proposed method. Finally,
conclusions of the chapter are given in Section 5.5.
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5.1.4 Notation

Let Rn be the set of real vectors of dimension n. The i-th element of a
vector x ∈ Rn is denoted by [x]i and ‖x‖2Q = x>Qx denotes the squared
weighted `2-norm of x. For matrices A ∈ Rm×n and B ∈ Rp×q , the
Kronecker product between A and B is denoted by A⊗B ∈ Rmp×nq . Let
Iba be the sequence of successive integers {a, a+1, · · · , b}, with a < b. The
Moore-Penrose pseudo-inverse of a non-square matrix A is denoted by
A†. The notation (Ad � p)(k) is used to express the dynamic dependence
of the matrix A on p at time k, e.g., A at time k depends on the future d
samples of the signal p, i.e., p(k), . . . , p(k + d − 1). The dependence on
the past samples is denoted in the same way.

5.2 Problem formulation

By referring to Figure 20, we consider the following discrete time LPV
data generating system in a linear fractional representation, where the
forward LTI part is given by, x(k + 1)

z(k)
yo(k)

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 x(k)
w(k)
u(k)

 , (5.1a)

where x ∈ Rnx is the state, u ∈ Rnu and yo ∈ Rny are the measured in-
puts and noise-free outputs of the system respectively. The output mea-
surements are corrupted by additive Gaussian white noise, i.e., y(k) =
yo(k) + e(k) and {A, . . . , D22} are unknown constant matrices of appro-
priate dimensions. The feedback path is represented by

w(k) = ∆(p(k))z(k), (5.1b)

where, ∆ : P→ Rnp×np is a function of the scheduling parameter p. The
variables x, z and w are latent (auxillary) variables whose measurements
are not available.

The following assumption are made about the system in (5.1):

A1. the structure of the feedback block ∆ is known.

A2. I −D11∆(p(k)) 6= 0 for all trajectories of scheduling signal p ∈ P.

We now formally state the identification problem addressed in this
chapter.
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Problem 1 Given an N -length training dataset D = {u(k), y(k), p(k)}Nk=1,
identify the LPV system represented by the LFR (5.1), estimating the unknown
matrices {A, . . . , D22}, to match the input-output behavior of the underlying
data generating system.

5.3 Identification algorithm for LFR

In this section, we describe the proposed method used to identify the
LPV-LFR model (5.1). The method consists of two stages. In the first
stage, the estimate x̂(k) of the state sequence characterizing the LTI block
is obtained using Kernel Canonical Correlation Analysis (KCCA) [81].
In the second stage, the latent variable sequence z(k) and the unknown
matrices {A, . . . , D22} are estimated by minimizing a nonlinear least
squares cost function using coordinate descent algorithm.

Furthermore, we consider a special case of the LFR model (5.1) with
the following assumptions,

• D11 = 0, which corresponds to the LPV model with affine depen-
dence on ∆(p(k)),

• The feedback block ∆(p(k)) has a diagonal structure.

Under these assumptions, the problem in the second stage reduces to
solving an ordinary least squares problem and the unknown model ma-
trices can be obtained by economic singular value decomposition of the
least-square solutions.

5.3.1 Regularized KCCA for state estimation

In this section, we use kernel canonical correlation analysis (KCCA) to
obtain the state sequence {x(k)}Nk=1 which is compatible with the given
dataset D. The concept of canonical correlation analysis is reviewed in
Appendix 5.6.

The model (5.1) can be represented in a LPV state-space form. By
re-writing the latent variable z(k) in (5.1) as

z(k) = (I −D11∆(p(k))−1 (C1x(k) +D12u(k)) , (5.2)

and w(k) as ∆(p(k))z(k), the following LPV state space representation is

135



obtained

x(k + 1) = A(p(k))x(k) + B(p(k))u(k), (5.3a)
y(k) = C(p(k))x(k) +D(p(k))u(k) + e(k), (5.3b)

where

A(p(k)) = A+B1∆(p(k))(I −D11∆(p(k)))−1C1,

B(p(k)) = B2 +B1∆(p(k))(I −D11∆(p(k)))−1D12,

C(p(k)) = C2 +D21∆(p(k))(I −D11∆(p(k)))−1C1,

D(p(k)) = D22 +D21∆(p(k))(I −D11∆(p(k)))−1D12.

The state sequence x(k) of the LPV model (5.3) compatible with the data
set D can be estimated by using KCCA as introduced in [81]. The key
idea behind using KCCA approach is that the state is the minimal inter-
face between past and future inputs u, outputs y, and scheduling data
samples p. Therefore, maximizing the correlation between past and fu-
ture data samples yields state estimates which are compatible with the
dataset D ([81; 106]).

For a given horizon length d, let us define past p̄dk ∈ Rdnp and future
scheduling data vector p̄dk+d ∈ Rdnp w.r.t time instance k as

p̄dk = [p(k − d) . . . p(k − 1)]>,

p̄dk+d = [p(k) . . . p(k + d− 1)]>.

The past and future input data ūdk ∈ Rdnu , ūdk+d ∈ Rdnu and output data
ȳdk ∈ Rdny , ȳdk+d ∈ Rdny are defined in a similar manner.

The future output samples of the LPV model (5.3) can be represented
in the observability form

ȳdk+d = (Odf � p)(k) · x(k) + (Hdf � p)(k) · ūdk+d + ēdk+d, (5.4)

where the d-step forward observability matrix (Odf �p)(k) ∈ Rdny×nx and
the forward Toeplitz matrix (Hdf �p)(k) ∈ Rdny×dnu , which have dynamic
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dependency on p, are explicitly given in (5.5).


y(k)

y(k+1)
...

y(k+d−1)

 =


C(pk)

C(pk+1)A(pk)
...

C(pk+d−1)
d∏
j=2

A(pk+d−j)


︸ ︷︷ ︸

(Odf�p)(k)

x(k)+



D(pk) 0 · · · 0

C(pk+1)B(pk) D(pk) · · ·
...

...
...

. . .
...

C(pk+d−1)
d−1∏
j=2

A(pk+d−j)B(pk) C(pk+d−1)
d−2∏
j=2

A(pk+d−j)B(pk+1) · · · D(pk+d−1)


︸ ︷︷ ︸

(Hdf�p)(k)

×


u(k)

u(k+1)
...

u(k+d−1)

+


e(k)

e(k+1)
...

e(k+d−1)

 (5.5)

From (5.4), the state variable x(k) is given as1

x(k) =
(
(Odf � p)(k)

)† (
ȳdk+d − (Hdf � p)(k)ūdk+d

)
, (5.6)

which shows that the value of the state x(k) at time k is a function of
future input, output and scheduling variables. Here, we assume that
(Odf � p)(k) has full column rank for all k ∈ Z satisfying the structural
observability assumption (see [81, Definition 3.1]).

Similarly, using the state update equation (5.3a), x(k) can be written
in terms of past data samples as

x(k) =

(
d∏
i=1

A(pk−i)

)
x(k − d) + (Rdp � p)(k) · ūdk, (5.7)

1As e is a zero-mean, independent and identically distributed white noise process, the

expected value of the term
(

(Odf � p)(k)
)†
ēdk+d is zero, which gives the unbiased state

estimate (5.6) in conditional mean sense.
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where (Rdp � p)(k) ∈ Rnx×dnu is the d-step backward reachability matrix
which can be easily computed from recursive substitutions of (5.3a).

Shifting (5.6) by d-samples backward in time we obtain x(k−d) which
is then substituted in (5.7). More specifically, from (5.6) we have

x(k − d) =
(
(Odf � p)(k − d)

)† (
ȳdk − (Hdf � p)(k − d)ūdk

)
. (5.8)

Then, by substituting (5.8) in (5.7),

x(k) =Md
p(k)

(
ȳdk − (Hdf � p)(k − d)ūdk

)
+ (Rdp � p)(k) · ūdk, (5.9)

whereMd
p(k) =

∏d
i=1A(pk−i)

(
(Odf � p)(k − d)

)†
. Thus, from (5.9) it fol-

lows that the state variable x(k) at time k is a function of past inputs,
outputs and scheduling variable data samples.

By defining z̄dk =

[
ūdk
ȳdk

]
, z̄dk+d =

[
ūdk+d

ȳdk+d

]
∈ Rd(nu+ny), (5.6) and (5.9)

can be rewritten as

x(k) =
(
(Odf � p)(k)

)† [−(Hdf � p)(k) I
]︸ ︷︷ ︸

ϕf (p̄dk+d)

z̄dk+d, (5.10)

x(k) =
[
−Md

p(k)(Hdf � p)(k−d)+(Rdp � p)(k) Md
p(k)

]︸ ︷︷ ︸
ϕp(p̄dk)

z̄dk , (5.11)

where ϕp : Rdnp → RnG×d(nu+ny) and ϕf : Rdnp → RnG×d(nu+ny) are
(unknown) mappings of past and future scheduling variable samples to
an nG-dimensional feature space. Note that (5.10) and (5.11) both pro-
vide the representation of the state x(k). However, (5.10) depends only
on future data, while (5.11) depends only on the past data.

According to the KCCA framework, the state sequence can be esti-
mated by maximizing the correlation between appropriate projections of
the quantities ϕp(p̄dk)z̄dk and ϕf (p̄dk+d)z̄

d
k+d. In the following, we present

the formulation of the regularized KCCA based on Least-Square Sup-
port Vector Machines (LS-SVM) originally introduced in [93] which al-
lows us to estimate the state sequence without explicitly parameterizing
the maps ϕp(p̄dk) and ϕf (p̄dk+d). The regularized version of KCCA formu-
lated with LS-SVM overcomes the problem of naive kernelization (see [5]).

To develop the LS-SVM formulation we define theN×nG-dimensional
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matrices

Φp =
[
ϕp(p̄

d
1)z̄d1 , . . . , ϕp(p̄

d
N )z̄dN

]>
, (5.12)

Φf =
[
ϕf (p̄d1+d)z̄

d
1+d, . . . , ϕf (p̄dN+d)z̄

N+d
N

]>
. (5.13)

The primal LS-SVM problem for KCCA (as introduced in [93]) is
given by

max
vj ,wj

N∑
k=1

(
γskrk − γf

1

2
s2
k − γp

1

2
r2
k

)
− 1

2
v>j vj −

1

2
w>j wj

s.t. sk = v>j ϕf (p̄dk+d)z̄
d
k+d, rk = w>j ϕp(p̄

d
k)z̄dk , ∀k = IN1 , (5.14)

where γ, γp, γf ∈ R+ are regularization hyper-parameters. The vari-
able vj ∈ RnG and wj ∈ RnG optimizing (5.14) represent the directions in
the feature space along which the projections of future and past data (sk
and rk, respectively) have maximum correlation. In order to solve (5.14)
without explicitly specifying the feature maps ϕp(p̄dk) and ϕf (p̄dk+d), the
dual problem is constructed by defining the Lagrangian

L(vj , wj , s, r, ηj , κj) =

N∑
k=1

(
γskrk − γf

1

2
s2
k − γp

1

2
r2
k

)
− 1

2
v>j vj −

1

2
w>j wj

−
N∑
k=1

ηkj
(
sk − v>j ϕf (p̄dk+d)z̄

d
k+d

)
−

N∑
k=1

κkj
(
rk − w>j ϕp(p̄dk)z̄dk

)
, (5.15)

where ηj =
[
η1
j · · · ηNj

]> ∈ RN and κj =
[
κ1
j · · ·κNj

]> ∈ RN are dual
Lagrange multipliers. The dual variables ηj and κj can be obtained via
Karush-Kuhn-Tucker (KKT) conditions, i.e., by setting the gradients of
the Lagrangian w.r.t. primal and dual variables ∂L

∂vj
, ∂L∂wj ,

∂L
∂sk

, ∂L∂rk ,
∂L
∂ηkj

, ∂L
∂κkj

,
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to zero. The KKT optimality conditions are given as follows,

∂L
∂vj

= 0→ vj =

N∑
k=1

ηkj ϕf (p̄dk+d)z̄
d
k+d, (5.16a)

∂L
∂wj

= 0→ wj =

N∑
k=1

κkjϕp(p̄
d
k)z̄dk , (5.16b)

∂L
∂sk

= 0→ γrk = γfsk + ηkj , (5.16c)

∂L
∂rk

= 0→ γsk = γprk + κkj , (5.16d)

∂L
∂ηkj

= 0→ sk = v>j ϕf (p̄dk+d)z̄
d
k+d, (5.16e)

∂L
∂κkj

= 0→ rk = w>j ϕp(p̄
d
k)z̄dk , (5.16f)

Through simple algebraic manipulations, the primal variables can be
eliminated based on the KKT conditions. The optimal dual variables sat-
isfy the following generalized eigenvalue problem,[

0 Kpp

Kff 0

] [
ηj
κj

]
= λj

[
γfKff + I 0

0 γpKpp + I

] [
ηj
κj

]
, (5.17)

where λj = 1/γ, and Kpp = ΦpΦ
>
p and Kff = ΦfΦ>f are kernel matrices

which define the inner product in the feature space. The elements of the
kernel matrices are given as

[Kff ]l,m = (z̄dl+d)
>ϕ>f (p̄dl+d)ϕf (p̄dm+d)︸ ︷︷ ︸

k̄(p̄dl+d,p̄
d
m+d)

z̄dm+d, (5.18a)

[Kpp]l,m = (z̄dl )>ϕ>p (p̄dl )ϕp(p̄
d
m)︸ ︷︷ ︸

k̄(p̄dl ,p̄
d
m)

z̄dm, (5.18b)

In (5.18), the function k̄(·, ·) is a positive definite kernel defining the in-
ner products ϕ>f (p̄dl+d)ϕf (p̄dm+d) and ϕ>p (p̄dl )ϕp(p̄

d
m). Definition of the

kernel instead of feature maps ϕp(p̄dk) and ϕf (p̄dk+d) is called the kernel
trick and allows one to formulate the generalized eigenvalue problem
(5.17). An example of the kernel is radial basis function (RBF) k̄(pi, pj) =
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c exp
(
−‖pi−pj‖

2

σ2

)
where c and σ are hyper-parameters which are usually

tuned via cross validation.
By solving the generalized eigenvalue problem (5.17), the dual vari-

ables ηj and κj are obtained. From the KKT conditions the primal vari-
ables are given as vj = Φ>f ηj and wj = Φ>p κj .

The estimate of the state sequence x̂(k) for the LPV model (5.3) com-
patible with the datasetD is obtained as follows. We parametrize the j-th
component of the estimated state vector x̂(k) as

[x̂(k)]j = v>j ϕf (p̄dk+d)z̄
d
k+d

Substituting the primal variable vj = Φ>f ηj , and representing the inner
product ϕ>f (·)ϕf (·) in terms of the kernel function k̄(·, ·), we obtain

[x̂(k)]j = η>j

 z̄
d>
1+dk̄(p̄d1+d, p̄

d
k+d)

...
z̄d>N+dk̄(p̄dN+d, p̄

d
k+d)

 z̄dk+d. (5.19)

Similarly, for wj = Φ>p κj the estimate of the j-th component of the
state at time k is given by

[x̂(k)]j = κ>j

 z̄
d>
1 k̄(p̄d1, p̄

d
k)

...
z̄d>N k̄(p̄dN , p̄

d
k)

 z̄dk . (5.20)

Remark: Note that, the eigenvalue problem (5.17) has 2N different
solutions ηj , κj for j = 1, . . . , N . The dual solutions ηj ∈ RN and κj ∈
RN of the generalized eigenvalue problem (5.17) can be computed using
following economical singular value decomposition (SVD) [81][

γfKff + I 0
0 γpKpp + I

]−1[
0 Kpp

Kff 0

]
= UΣ

[
V1

V2

]>
(5.21)

where the dual solutions can be obtained as ηj = [V1]j and κj = [V2]j
with [·]j denoting the j-th column of the matrix. The dimension of the
state x̂ can be chosen by considering only those [x̂(k)]j which correspond
to the n̂x most significant singular values contained in Σ.

We remark that the estimated state sequence x̂(k), compatible with
the data D is estimated up to a state transformation T : Rdnp → Rn̂x×nx

which can have dynamic dependence on scheduling variable p(k), . . .,
p(k + d − 1). Therefore, x̂(k) is estimated in a state-space basis different
from the basis of x(k).
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5.3.2 Estimation of latent variable z(k) and LTI model pa-
rameters

Once the state sequence X̂ = {x̂(k)}Nk=1 is estimated, the latent variables
Z = {z(k)}Nk=1 and the unknown matrices Θ = {A,B1, . . . , D22} of the
LTI model (5.1) can be obtained (up to a similarity transformation) by
minimizing the following nonlinear least-squares cost

J (Z,Θ) =

N−1∑
k=1

‖x̂(k + 1)− (Ax̂(k) +B1∆(pk)z(k) +B2u(k))‖2Qx

+

N∑
k=1

‖z(k)− (C1x̂(k) +D11∆(pk)z(k) +D12u(k))‖2Qz

+

N∑
k=1

‖y(k)− (C2x̂(k) +D21∆(pk)z(k) +D22u(k))‖2Qy , (5.22)

where Qx, Qz, Qy � 0 are positive definite weighting matrices. The cost
function is minimized w.r.t. {Z,Θ} using the coordinate descent ap-
proach described in Algorithm 3 under the assumption that ∆(p(k)) is
known.

Note that, the solution at Step 1.1 and 1.2 of the Algorithm 3 can be
computed analytically through linear least-squares.

LPV model with affine dependence on ∆(p(k))

We consider a special case of the LFR model (5.1) with the following
assumptions:

• D11 = 0, which corresponds to LPV models with affine dependence
on ∆(p(k)),

• ∆(p(k)) = ϕ(p(k))I , i.e., the feedback block ∆ has a diagonal struc-
ture with known real-valued basis functions ϕ : P→ R.

As D11 = 0, we have

z(k) = C1x(k) +D12u(k). (5.23)
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Algorithm 3 Coordinate descent for the estimation of latent variables z
and model parameter matrices Θ

Input: training dataset D = {u(k), y(k), p(k)}Nk=1; estimated state se-
quence X̂ = {x̂(k)}Nk=1; tolerance ε, maximum number of iteration nmax;
initial guess Z0

1. Iterate for n = 1, . . .

1.1 Θn ← argminΘ J (Zn−1,Θ)

1.2 Zn ← argminZ J (Z,Θn)

2. Until ‖Zn − Zn−1‖ ≤ ε or n = nmax

Output: Estimated matrices Θn

By substitutng (5.23) into (5.1) we obtain the following state space model,

x(k + 1) =Ax(k) +B1∆(p(k))C1x(k)

+B1∆(p(k))D12u(k) +B2u(k), (5.24a)
y(k) =C2x(k) +D21∆(p(k))C1x(k)

+D21∆(p(k))D12u(k) +D22u(k), (5.24b)

Using the assumption ∆(p(k)) = ϕ(p(k))I , the unknown matrices Θ
in (5.24), can be solved in a least-squares sense by minimizing the cost

J (Θ1,Θ2) =

N−1∑
k=1

∥∥∥∥∥∥
[
x̂(k + 1)
y(k)

]
− [Θ1 Θ2]︸ ︷︷ ︸

Θ

[
1

ϕ(p(k))

]
⊗
[
x̂(k)
u(k)

]∥∥∥∥∥∥
2

2

, (5.25)

where

Θ1 =

[
A B2

C2 D22

]
,

Θ2 =

[
B1C1 B1D12

D21C1 D21D12

]
=

[
B1

D21

] [
C1 D12

]
.
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Once the least-squares cost J in (5.25) is minimized w.r.t. Θ1 and Θ2, the
matrices {A,B2, C2, D22} are obtained by appropriate partitioning of Θ1.
The matrices {B1, D21, C1, D12} are reconstructed by economic singular
value decomposition of Θ2. Specifically, let U , Ξ and V be the matrices
obtained from the economic SVD of Θ2, i.e. Θ2 = UΞV > which gives[

B1

D21

]
= UΞ1/2,

[
C1 D12

]
= Ξ1/2V >. (5.26)

The individual matrices are obtained by appropriate partitioning using
the estimated state dimension n̂x and known dimensions of inputs nu,
outputs ny and ∆(p).

5.4 Numerical examples

In this section, the effectiveness of the proposed method is demonstrated
via simulation examples. The output samples y(k) used in the train-
ing phase are corrupted by an additive zero-mean white noise e(k) with
Gaussian distribution. The effect of the noise on the output is quantified
in terms of the Signal-to-Noise Ratio (SNR) defined as

SNR = 10 log

∑N
k=1 (y(k)− e(k))

2∑N
k=1 (e(k))

2
.

The quality of the estimated model is assessed on a noise-free valida-
tion data of length Nval via Best Fit Rate (BFR) and Variance Accounted For
(VAF) criterion defined as

BFR = max

1−

√√√√∑Nval

k=1 (y(k)− ŷ(k))
2∑Nval

k=1 (y(k)− ȳ)
2
, 0

× 100%,

VAF = max

{
1− var(y − ŷ)

var(y)
, 0

}
× 100%,

with ŷ being the simulated model output and ȳ being the sample mean
of the output over the validation set. The operator var(·) denotes the
variance of its argument.

All computations are carried out on i5 1.7GHz Intel core processor
with 4 GB of RAM, running MATLAB R2016b.
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Example 1

The LPV system (5.1) is used for data generation with forward LTI block A B1 B2

C1 D11 D12

C2 D21 D22

 =


0 1 0 1.073
−0.1 0.7 0.816 1.075
0.524 −0.625 −0.5 0.5
0.443 0.060 0.5 0.5

 , (5.28)

and the feedback path with scalar scheduling variable represented by

w(k) = p(k)z(k).

Training and validation datasets of length N = 400 and Nval = 400,
respectively, are generated by exciting system (5.1) with input u being
a white-noise process with uniform distribution U(−1, 1). The standard
deviation of the noise e(k) corrupting the training output y(k) is 0.05,
which corresponds to an SNR equal to 21 dB. The scheduling signal p(k)
is given by

p(k) = 0.5 sin(k) + δ(k),

where δ(k) is a random variable with uniform distribution U(−0.5, 0.5).
In the first stage, the KCCA algorithm is run to estimate the state se-
quence x̂(k), using RBF kernels k̄(pi, pj) = c exp

(
−‖pi−pj‖

2

σ2

)
with pa-

rameters c = 2 and σ = 10.5 to construct kernel matrices Kpp and Kff

in (5.17). The LS-SVM regularization parameters are chosen as γp =
γf = 500 and the past and future window length is d = 3. These hyper-
parameters are chosen through cross-validation.
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Figure 21: Singular values of the SVD problem (5.21)
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Figure 22: Example 1. True (red) vs estimated (blue) output

Table 16: Example 1: Best Fit Rate (BFR) and Variance Accounted For (VAF)
on a noise-free validation data.

BFR 92.71 %
VAF 99.74 %

The dimension of the state is determined by solving the SVD prob-
lem (5.21). The first 50 singular values are shown in Figure 21. We ob-
serve that there is a significant gap between the first two singular values
and rest of them. Based on this observation the SVD is truncated to the
first two components. In other words, the selected state dimension is
nx = 2. The total computation time to construct the state sequence x̂(k)
is 8.7 sec. This includes the time required to solve the generalized eigen-
value problem (5.17) and to obtain x̂(k) based on (5.19).

Using the estimated state x̂(k) the cost function J (Z, θ) in (5.22) is
optimized using a coordinate descent (Algorithm 3) withQx = 100,Qy =
10 and Qz = 10. The algorithm is run for n = 250 iterations, where
each iteration takes around 0.3 sec. The performance of the proposed
approach is evaluated using a noise-free validation dataset.

The true and the estimated outputs are shown in Figure 22 and the
BFR and VAF criterion are reported in Table 16. The obtained results
show a good match between system and model output.
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Table 17: Best Fit Rate (BFR) and Variance Accounted For (VAF) on valida-
tion data.

BFR 96.05 %
VAF 99.84 %

Example 2

We consider again the data generating system (5.28) but now with D11 =
0 (instead of D11 = −0.5), which corresponds to an LPV model with
affine dependence on ∆(p(k)).

The state sequence is first estimated using KCCA with the same hyper-
parameters used in the Example 1. Then, the least-square problem (5.25)
is solved followed by singular value decomposition as in (5.26) to com-
pute the estimates of the unknown model matrices. The total compu-
tation time to solve the least squares problem followed by SVD is 1.01
sec. The estimation results in terms of BFR and VAF criterion (computed
w.r.t. noise free validation data) are reported in Table 17, for an SNR of
21 dB on training data. The results show that an accurate estimate of the
output of the true system is obtained with high computational efficiency.

5.5 Conclusions

In this chapter, we have presented a method to identify LPV models in a
linear fractional representation. The proposed two stage approach con-
sists of estimation of the state sequence using canonical correlation anal-
ysis between past and future data followed by the estimation of latent
variable sequence and unknown model parameter matrices by solving
a nonlinear least squares problem using coordinate descent algorithm.
The proposed method is applicable for MIMO LPV models defined via
LFRs with multi-dimensional scheduling signal. Current research activ-
ities are focused on the development of alternative algorithms for latent
variable estimation and on the application of the presented KCCA based
approach to the identification of other model classes such as switched
models.
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5.6 Appendix

In this appendix, we review the statistical tools of canonical correlations
which are used in the chapter for state estimation of LPV models.

Canonical correlation analysis

Canonical Correlation Analysis (CCA) is a statistical method used to
determine linear relation between several variables. Given two sets of
variables, u ∈ Rnu and y ∈ Rny with N samples collected in matrices
U ∈ RN×nu and Y ∈ RN×ny , CCA finds two vectors vj ∈ Rnu and
wj ∈ Rny to maximize the correlation between the so called variates Uvj
and Y wj , which leads to following optimization problem [93; 106],

max
vj ,wj

v>j U
>Y wj s.t. v>j U

>Uvj = 1, w>j Y
>Y wj = 1,

or equivalently,

min
vj ,wj

‖Uvj − Y wj‖2 s.t. v>j U
>Uvj = 1, w>j Y

>Y wj = 1.

Kernel canonical correlation analysis

Kernel CCA (KCCA) is a nonlinear extension of the classical CCA where
data is mapped into high dimensional feature space where classical CCA
is applied. In principle, neither the feature maps nor their dimensions
are a-priory specified.

Let φu : Rnu → Rdu denote the feature map and let Φu be

Φu = [φu(u1) φu(u2) · · · φu(uN )]
>
.

The matrix Φy is defied similarly using feature maps φy : Rny → Rdy of
the variable y. The non-linear extension of the CCA problem is,

min
vj ,wj

v>j Φ>u Φywj

s.t. v>j Φ>u Φuvj = 1, w>j Φ>y Φywj = 1 (5.29)

The KCCA problem (5.29) can be formulated using least-square support
vector machine (LS-SVM) approach [93; 106] and can be solved with
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primal-dual optimization. The primal problem in LS-SVM is given by,

max
vj ,wj

J (vj , wj , e, r) =

N∑
i=1

(
γeiri − νu

1

2
e2
i − νy

1

2
r2
i

)
− 1

2
v>j vj −

1

2
w>j wj

s.t. ei = v>j φu(ui), ri = w>j φy(yi), i = 1, . . . , N, (5.30)

and the associated Lagrangian with a and b as dual variables,

L(vj , wj , e, r, a, b) = J (vj , wj , e, r)

−
N∑
i=1

ai
(
ei − v>j φu(ui)

)
−

N∑
i=1

bi
(
ri − w>j φy(yi)

)
. (5.31)

The KKT optimality conditions for the corresponding dual problem leads
to the following generalized eigenvalue problem,

Kyyb =
1

γ
(νuKuu + I)a,

Kuua =
1

γ
(νyKyy + I)b,

where, Kuu = Φ>u Φu and Kyy = Φ>y Φy are kernel gram matrices charac-
terizing the inner products (i.e., φ>y (·)φy(·) and φ>u (·)φu(·)) in the feature
space, νu, νy are regularization hyper-parameters and a and b are the dual
vectors associated with the LS-SVM problem.
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Chapter 6

Conclusions and future
directions

In this thesis, we developed a set of data-driven modeling tools for the
identification of Linear Parameter-Varying models. By virtue of the schedu-
ling signal, LPV model class provides a framework for describing the
nonlinear and time-varying system dynamics accurately but at the same
time retaining the simplicity of the LTI models by preserving the lin-
earity between input and output maps. Thus, the LPV paradigm is of
significant practical importance for modeling and control of real world
systems.

The identification methods developed in this thesis focused on some
of the important research questions pertaining to LPV models, for eg.,
model structure selection, identification with noisy scheduling signals,
identification from closed-loop data, identification of LPV models via
PieceWise Affine (PWA) regression and identification of LPV models
with linear fractional representations. The main contributions and pos-
sible future research directions are outlined in this chapter.

6.1 Main contributions

In Chapter 2, two approaches are presented for data-driven model or-
der selection of LPV input-output models. In the first approach, the
non-parametric framework of least squares support vector machines (LS-
SVM) is extended for model order selection. The proposed regularized
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LS-SVM method is computationally efficient which is also applicable to
the models having multi-dimensional scheduling parameters. In this
framework, the LPV model coefficients are characterized via kernel func-
tions which obviate the need to specify the basis functions a-priory. The
model order selection is then performed via convex optimization enforc-
ing sparsity in the over-parameterized model structure.

In the second approach, conventional LASSO method is appropriated
adapted for model order selection of LPV models when the measure-
ments of the scheduling parameters are noise corrupted. In this method,
a bias-corrected cost function is proposed which gives an asymptotic
bias-free criterion in order to obtain a consistent parameter estimate along
with the correct model order. The bias-corrected cost is also used as a cri-
terion to tune the LASSO hyper-parameters. The results of this chapter
are presented in [60; 61].

In Chapter 3, a bias-correction approach is presented for the identifi-
cation of LPV input-output plant models from closed-loop data. The pro-
posed method provides a consistent estimate of the model parameters
by correcting the bias in the least-squares estimates stemming from the
correlation between output noise and plant inputs. The bias-correction
framework is extended further to deal with the case of noisy measure-
ments of the scheduling signals. In this chapter, the expressions to char-
acterize the bias-eliminating matrices are derived and proofs of consis-
tency of the model parameter estimates are provided. Furthermore, with
the presented example of nonlinear two-tank system, it is observed that
the proposed method performs well even when the underlying data gen-
erating system does not belong to the selected model class. The results
of this chapter appeared in the paper [62].

In Chapter 4, as an alternative to the conventional parametric and
non-parametric methods, the problem of LPV identification is recast as a
PieceWise Affine (PWA) regression problem. This framework introduces
more flexibility in choosing the model structure and approximating the
nonlinear LPV model coefficients by exploiting the universal approxima-
tion property of PWA maps. A regularized moving-horizon PWA regres-
sion algorithm is proposed based on mixed-integer programming.

The framework of this algorithm is applied to a real world problem
of energy disaggregation using benchmark dataset. In energy disaggrega-
tion problem, the power consumption patterns of individual devices are
estimated by using only the measurements of aggregated power. In the
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proposed method, the power consumption of each device is described
by PWA autoregressive models. The active devices contributing to the
instantaneous power are determined by solving a binary quadratic pro-
gramming problem. It is shown that the proposed disaggregation algo-
rithm using dynamic PWA autoregressive models outperforms the ap-
proach relying on static models. The methods presented in this chapter
are based on the contributions [58; 59; 64].

In Chapter 5, a two-stage approach is proposed for the identification
of LPV models with linear fractional representation (LFR). In the first
stage, the kernelized canonical correlation analysis (KCCA) is used to es-
timate the state sequence of the LPV model. The state of a system is a
minimal interface between past and future data samples. Using this fact,
the correlation between the projections of past and future data is maxi-
mized in order to obtain an estimate of the state sequence. In the second
stage, a nonlinear least squares problem is solved to obtain the latent
variable sequence charactering the LFR form as well as the unknown
model matrices by using the estimated state sequence. A coordinate de-
scent algorithm is employed to solve the nonlinear least squares problem.
For an LFR form having affine dependence of model parameters on the
feedback block, the unknown matrices are estimated by solving ordinary
least-squares followed by singular value decomposition. The results of
this chapter are based on the work [63].

6.2 Future research directions

In this section we outline the possible research directions to extend the
contributions presented in the thesis.

• Model order selection:
The non-parametric regularized LS-SVM approach presented in
Chapter 2 can be further extended for case of noise corrupted sched-
uling signal measurements by combining it with the parametric
bias-correction approach presented in the same chapter. In this
case, the advantages of both the methods can be exploited, namely,
data-driven estimation of model coefficients without a-prior pa-
rameterization in terms of basis functions, and obtaining a consis-
tent estimates in the presence of scheduling signal noise. The main
challenge is to explicitly characterize the bias-correcting term for
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the nonlinear kernel functions.

• Closed-loop identification:
The closed-loop identification method proposed in Chapter 3 can
be extended to models having a more general noise structure, for
e.g., Box- Jenkins noise models. In this case, one possible way to
handle the colored noise corrupting the output is to introduce in-
strumental variables in the closed-loop setting. Furthermore, the
Gaussian assumption on the scheduling variable noise can be re-
laxed by using moment generating functions for characterizing the
probability distribution of the noise. Moreover, as stated before,
the parametric framework can be replaced with non-parametric ap-
proaches characterizing LPV model coefficients in terms of kernel
functions.

• Piecewise affine regression for LPV identification:
The PWA regression framework based on integer programing for
the identification of LPV models presented in Chapter 4 can be fur-
ther extended to include data-driven model order selection. More-
over, efficient algorithms can be investigated for solving the mixed-
integer programming problems which are suitable for real time em-
bedded implementation.

• Identification of linear fractional representation:
The method presented in Chapter 5 assumes that the structure of
the feedback block (which is a function of the scheduling variables)
in the LFR form is completely known. As a future research direc-
tion, the method can be extended to relax this assumption by esti-
mating the feedback block with non-parametric methods. Further
investigations can be made to develop an approach which gives
consistent estimates in presence of the noise-corrupted scheduling
measurements.

• Modeling of nonlinear system:
One of the important research questions which is not investigated
in this thesis is the choice of the scheduling variables in order to
describe the nonlinear dynamics with LPV models. The choice of
scheduling variables is very critical which should be a part of mo-
del structure selection step. Often, some of the internal state vari-
ables of the nonlinear system are chosen as scheduling parameters
which results in a quasi-LPV representation. Dedicated methods
need to be developed for the identification of quasi-LPV models.
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[102] R. Tóth, C. Lyzell, M. Enqvist, P.S.C. Heuberger, and P.M.J. Van den Hof.
Order and structural dependence selection of LPV-ARX models using a
nonnegative garrote approach. In Proc. of the 48th IEEE Conference on Deci-
sion and Control, pages 7406–7411, Shanghai, China, 2009. 13

[103] J. W. van Wingerden and M. Verhaegen. Subspace identification of bilinear
and LPV systems for open-and closed-loop data. Automatica, 45(2):372–
381, 2009. 12, 53, 132

[104] V. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998. 21

[105] V. Verdult, M. Lovera, and M. Verhaegen. Identification of linear
parameter-varying state-space models with application to helicopter rotor
dynamics. International Journal of Control, 77(13):1149–1159, 2004. 4

[106] V. Verdult, J. A. K. Suykens, J. Boets, I. Goethals, and B. De Moor. Least
squares support vector machines for kernel CCA in nonlinear state-space
identification. In Proc. of the 16th Intl. symp. math. theory of networks and syst,
Leuven, Belgium, 2004. 136, 148

162



[107] V. Verdult and M. Verhaegen. Kernel methods for subspace identification
of multivariable LPV and bilinear systems. Automatica, 41:1557–1565, 2005.
12, 132

[108] M. Zeifman and K. Roth. Nonintrusive appliance load monitoring: Review
and outlook. IEEE Transactions on Consumer Electronics, 57(1):76–84, 2011.
118, 119

[109] W. X. Zheng. A bias correction method for identification of linear dy-
namic errors-in-variables models. IEEE Transactions on Automatic Control,
47(7):1142–1147, 2002. 54

[110] W. X. Zheng and C. Feng. A bias-correction method for indirect identifica-
tion of closed-loop systems. Automatica, 33(8):1499–1523, 1997. 54

[111] K. Zhou and J. C. Doyle. Essentials of Robust Control. Prentice-Hall, 1998. 5,
132

[112] K. Zhou, J. C. Doyle, and K. Glover. Robust and optimal control. Prentice-
Hall, 1996. 5

[113] A. Zoha, A. Gluhak, M.A. Imran, and S. Rajasegarar. Non-intrusive load
monitoring approaches for disaggregated energy sensing: A survey. Sen-
sors, 12(12):16838–16866, 2012. 118, 119





Unless otherwise expressly stated, all original material of whatever
nature created by Manas Mejari and included in this thesis, is li-
censed under a Creative Commons Attribution Noncommercial Share
Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:manas.mejari@imtlucca.it

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Linear parameter-varying paradigm
	1.2 LPV model representations
	1.3 Challenges in LPV model identification
	1.4 Contributions and organization

	2 LPV model order selection 
	2.1 Introduction
	2.1.1 Motivation
	2.1.2 Contributions
	2.1.3 Outline
	2.1.4 Notations

	2.2 Regularized LS-SVM
	2.2.1 Problem formulation
	2.2.2 LS-SVM for LPV model identification
	2.2.3 Model order selection with LS-SVM
	2.2.4 Simulation examples

	2.3 Model order selection with noisy scheduling
	2.3.1 Problem formulation
	2.3.2 Instrumental-variable estimate
	2.3.3 Bias-corrected LASSO
	2.3.4 Simulation examples

	2.4 Conclusions
	2.5 Appendix
	2.5.1 Biased instrumental variable cost
	2.5.2 Construction of bias eliminating matrix


	3 Closed-loop identification of LPV models
	3.1 Introduction
	3.1.1 Motivation
	3.1.2 Contributions
	3.1.3 Outline
	3.1.4 Notation

	3.2 Problem formulation
	3.2.1 Data generating system
	3.2.2 Model structure for identification

	3.3 Bias-corrected least squares
	3.3.1 Bias in the least-squares estimate
	3.3.2 Construction of the bias-eliminating k
	3.3.3 Bias corrected estimate
	3.3.4 Estimate with unknown noise variance

	3.4 Bias-correction with noisy scheduling signal measurements
	3.4.1 Bias-corrected least squares
	3.4.2 Construction of the bias-eliminating matrices
	3.4.3 Bias-corrected estimate
	3.4.4 Estimation with unknown variances e2 and 2

	3.5 Case studies
	3.5.1 Example 1
	3.5.2 LPV identification of a nonlinear two-tank system

	3.6 Conclusions
	3.7 Appendix
	3.7.1 Proof of [prop:prop1]Property 5
	3.7.2 Proof of [prop:prop2]Property 6
	3.7.3 Construction of bias eliminating matrix
	3.7.4 Proof of [Property:6]Property 9


	4 PWA regression for identification of LPV models
	4.1 Introduction
	4.1.1 Motivation
	4.1.2 Contribution
	4.1.3 Outline

	4.2 Problem formulation
	4.2.1 Identification of PWA-ARX models
	4.2.2 Identification of LPV-ARX models

	4.3 PWA regression algorithm
	4.3.1 Recursive clustering and parameter estimation
	4.3.2 Construction of the state partition

	4.4 Simulation examples
	4.4.1 PWA-ARX models
	4.4.2 LPV-ARX models

	4.5 Conclusions
	4.6 Appendix
	4.6.1 Energy Disaggregation
	4.6.2 Motivation
	4.6.3 Contribution
	4.6.4 Problem formulation
	4.6.5 Energy disaggregation algorithm
	4.6.6 Stage S1: Training appliance models
	4.6.7 Stage S2: Energy disaggregation
	4.6.8 Application to real data
	4.6.9 Performance measures
	4.6.10 Supervised training phase
	4.6.11 Energy disaggregation


	5 Identification of LPV models with linear fractional representation
	5.1 Introduction
	5.1.1 Motivation
	5.1.2 Contributions
	5.1.3 Outline
	5.1.4 Notation

	5.2 Problem formulation
	5.3 Identification algorithm for LFR
	5.3.1 Regularized KCCA for state estimation
	5.3.2 Estimation of LPV-LFR model parameters

	5.4 Numerical examples
	5.5 Conclusions
	5.6 Appendix

	6 Conclusions and future directions
	6.1 Main contributions
	6.2 Future research directions

	References

