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Abstract

The article presents a variational autoencoder (VAE) tailored for the
identification of hybrid piecewise models in input-output form. We show
that using a specialized autoencoder structure, the latent space can pro-
vide an interpretable representation in terms of the modes of the under-
lying hybrid system. In particular, we use categorical encoding of the
discrete latent variables whose distribution is approximated via the en-
coder neural network, characterizing a partition of the regressor space,
while the decoder consists of a set of neural networks, each correspond-
ing to a local submodel of the piecewise hybrid system. By employing
variational Bayesian framework for inference, the constitutive terms of
the evidence lower bound (ELBO) are derived analytically with the cho-
sen VAE architecture. The ELBO loss consists of a reconstruction error
term and a regularization term over the latent modes. This loss is op-
timized in order to train the encoder-decoder networks concurrently via
back-propagation. The developed framework is not restricted to simple
piecewise affine (PWA) models and it can be straightforwardly extended
to general class of piecewise non-linear systems over non-polyhedral do-
mains.

1 Introduction

In recent years, the availability of flexible open-source software with automatic
differentiation capabilities along with the hardware support for parallelization
has sparked renewed interest of the Automatic Control community in using deep
learning tools for modeling dynamical systems [14]. Many recent contributions
have developed algorithms using neural networks for the identification of non-
linear dynamical systems [6, 15, 20, 23], characterized by continuous variables.
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However, very few works have focused on developing a deep learning framework
for modeling hybrid systems, which operate concurrently in continuous as well
as discrete domains.

Hybrid models have proven to be a powerful tool to describe the behavior of
many real-world systems which are characterized by different operating regions.
The system can switch, either smoothly or abruptly, among these regions, giving
rise to data composed of combination of system’s behavior at each operating
mode. For the analysis and controller synthesis of such systems, it is necessary
to decompose the data into separate clusters, each representing the underlying
mode and to identify system’s local behavior around each operating point. To
this end, many approaches have been proposed over the years to learn hybrid
models from data (see, survey paper [7] for an overview), which can describe
the local behaviors and uncover different operating regions of the system. Most
of the conventional approaches for hybrid system identification are restricted to
simple hybrid structures (such as piecewise affine maps), often requiring linear
separability assumptions of the data clusters. These methods do not utilize
powerful deep learning tools, which can potentially be exploited to recognize
non-linear clustering patterns and more complex local dynamics. In this paper,
we aim at developing a framework for learning a class of hybrid dynamical
models called piecewise models, utilizing tools from modern deep learning.

A piecewise model consists of a set of local submodels, each defined over a
specific region of the regressor space. Depending upon the parameterization of
local submodels as well as its corresponding region, the following nomenclature
is used in the literature [12]: (i) piecewise affine (PWA): affine local models over
polyhedral domain; (ii) piecewise non-linear (PWN): non-linear submodels over
polyhedral domain; (iii) non-linearly piecewise affine (NPWA): affine submod-
els over non-polyhedral domain; (iv) nonlinearly piecewise nonlinear (NPWN):
non-linear submodels over non-polyhedral domain.

Learning piecewise models from data is an NP-hard problem [11], which re-
quires estimating the sub-models as well as a partition of the regressor space.
Over the years several heuristics have been developed for learning piecewise
models (albeit, not utilizing deep learning), which include: the recently pro-
posed optimization-based algorithm [1] for handling numeric as well as cate-
gorical data; the bounded-error approach [2]; recursive clustering-based meth-
ods [3, 4, 17], mixed-integer programming algorithms [21, 18], Bayesian infer-
ence [9, 19], among many others. The aforementioned contributions and most of
the existing approaches proposed in the literature are restricted to PWA mod-
els having affine submodel parameterization over polyhedral partitioning. Very
few works have addressed the identification of non-linear submodels and non-
polyhedral domains, e.g., in [12], kernel regression and support vector machines
are employed to identify PWN and NPWA models. Kernel methods (for sub-
model estimation) combined with optimization-based strategies (for clustering)
are proposed in [13, 16] to learn PWN models.

In this paper, we propose a method based on variational autoencoder (VAE)
to learn piecewise models. The VAE was first introduced in the seminal work [10],
generalizing the deterministic autoencoder [8], to the families of probabilistic
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models with variational Bayesian inference. In our work, we consider specific
architectures for the encoder and decoder networks in VAE, in order to take
into account the hybrid nature of the underlying system. The encoder approx-
imates a distribution of the discrete latent modes, characterizing a partition
of the regressor space, while the decoder consists of a set of neural networks,
each corresponding to a local submodel of the piecewise hybrid system. With
categorical encoding of the latent modes, we compute the expectation terms in
the ELBO loss analytically. This avoids sampling and re-parameterization trick
employed in the conventional VAE [10], reducing the overall training cost. In
summary, concurrent solution of intertwined regression and classification prob-
lems required in the hybrid piecewise model identification is obtained via si-
multaneous training of the encoder-decoder networks by minimizing the ELBO
loss.

To the best of our knowledge, neural networks have been considered for
piecewise models only in [5], where a neural network classifier to recognize the
partition of the regressor space is proposed for identification of NPWA mod-
els. Our work differs from [5] in the following ways: (i) in [5], an expectation-
maximization algorithm is employed in a frequentists setting to derive maximum-
likelihood (ML) estimate of the model parameters. Our method is based on
amortized variational inference in a Bayesian framework, which allows incorpo-
rating prior information of the latent mode probabilities via a prior distribution;
(ii) the method in [5] is restricted to affine parameterization of the submodels
(PWA and NPWA models), while our work is applicable to non-linear submod-
els using decoder neural networks, i.e., identification of more general classes of
piecewise models such as PWN and NPWN; (iii) the ELBO loss derived in this
paper consists of a regularization term in the form of mode entropy, which allows
to control potential mode collapses during training as well as to impose regular
structure over the latent space. No such regularization term is considered in the
ML loss in [5].

The article is organized as follows. The type of hybrid model considered in
this work are described in Section 2. The identification problem is formalized
in Section 3. The proposed variational autoencoder architecture tailored for
piecewise models is presented in Section 4. In Section 5, we derive the evidence
lower bound loss which is used to train the VAE network. Finally, the effective-
ness of the proposed method is demonstrated via four case studies reported in
Section 6.

2 Hybrid piecewise models

In this section, we describe types of piecewise hybrid models which we aim
to identify. We consider models in input-output form with inputs denoted as
xt ∈ X ⊆ Rnx , and measured outputs as yt ∈ Y ⊂ Rny .
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2.1 Piecewise affine model

The PWA model f : X → Y is described as follows:

f(xt) =


θ
′

1

[
1
xt

]
if xt ∈ X1,

...
...

θ
′

K

[
1
xt

]
if xt ∈ XK ,

(1)

where K ∈ N is the number of modes (i.e., the number of affine functions
defining f), and θi ∈ R(nx+1)×ny is the parameter vector associated to the i-th
affine submodel. The regions Xi ⊆ X can be either polyhedral (PWA model) or
non-polyhedral (NPWA model). The set {Xi}si=1 forms a complete partition1

of the regressor space X.

Remark 1 (PWA-ARX model) If the data is generated from a dynamical
system S, the regressor xt can be defined in terms of past na outputs and past
nb (exogenous) input samples, i.e., xt = [y

′

t−1, · · · , y
′

t−na
, u

′

t−1, · · · , u
′

t−nb
]′ ∈

R(nyna+nunb). This corresponds to a piecewise affine autoregressive with exoge-
nous input (PWA-ARX) model.

2.2 Probability weighted affine model

The probability weighted affine (PrA) model provides a smooth relaxation of the
PWA model [22], where the individual models are composed by probabilistic
weighting functions as follows:

yt = fpr(xt) + vt, (2a)

=

K∑
i=1

pitθ
′

i

[
1
xt

]
+ vt, (2b)

where pit denotes the probability that the regressor xt belongs to mode i and is
parametrized by the softmax function

pit =
exp(η

′

i

[
1
xt

]
)

1 +
∑K−1

i=1 exp(η
′
i

[
1
xt

]
)
, (2c)

where ηi ∈ Rnx+1 is an unknown parameter vector characterizing the partition
of the regresor space. Indeed, it is possible to transform PrA model (2) to PWA
model (1), using, e.g, the rule xt ∈ Xi,⇔ i = arg maxi=1,...,K pit.

1The collection {Xi}Ki=1 is a complete partition of X if
⋃K

i=1 Xi = X and
◦
Xi ∩

◦
Xj = ∅,

∀i ̸= j, with
◦
Xi denoting the interior of Xi.
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2.3 Piecewise non-linear model

Piecewise non-linear models represent a non-linear extension of PWA (1) ones,
and are defined as follows:

f(xt) =


g1(xt; θi) if xt ∈ X1,
...

...
gK(xt; θK) if xt ∈ XK ,

(3)

where gi : Xi → Y are local non-linear maps with parameters θi. As stated
before, the regions Xi ⊆ X can be either polyhedral (PWN model) or non-
polyhedral (NPWN model).

3 Learning problem

We consider a training dataset D = {xt, yt}Tt=1 consisting of T input-output
samples generated from the following system S

yt = f(xt) + vt, (4)

where vt ∼ N (0, σ2
vIny ) is a multivariate zero-mean white Gaussian noise with

diagonal covariance, statistically independent of the input xt.

3.1 Piecewise regression problem

Given a dataset D, the piecewise regression problem entails the following tasks:

T1 Computation of the parameters Θ = [θ1, · · · , θK ] defining the local affine
functions in the PWA map f in (1); or equivalently fpr in (2b); or equiv-
alently functions {gi(xt; θi)}Ki=1 in (3);

T2 Classification of the regressors xt into clusters and subsequent character-
ization of the partition {Xi}Ki=1 of the regressor space.

In this work, we fix the number of modes K a-priori. In case the parameter K
is unknown, it can be chosen via cross validation, trading-off between accuracy
vs model complexity.

3.1.1 Active mode:

In this paper, we will make use of a K dimensional discrete latent variable zt,
termed as the active mode at time t, having a 1-of-K representation, such that

zit =

{
1 if xt ∈ Xi,
0 otherwise.

(5)

Thus, the i-th component zit of the vector zt is 1 if and only if the regressor xt

belongs to the i-th region Xi. The sequence of discrete active modes {zt}Tt=1,
dictates the overall clustering of the regressor vectors {xt}Tt=1 to corresponding
regions, which can be used to compute a partition of the regressor space X .
Note that the mode sequence {zt}Tt=1 is unknown and is to be estimated.
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3.2 Bayesian problem formulation

In the rest of the paper, we consider a Bayesian setting in which it is assumed
that the output samples in D are generated from an (unknown) true distribu-
tion yt ∼ pΘ(yt|xt) with parameters Θ of the piecewise hybrid system. The
active mode zt in (5) represents latent encoding of the output yt, which is
assumed to be jointly distributed with yt according to an unknown joint distri-
bution pΘ(zt, yt|xt). In other words, the data generating system is modelled as

pΘ(yt|xt) =
∑K

i pΘ(z
i
t, yt|xt) =

∑K
i pΘ(yt|zit, , xt)pΘ(z

i
t|xt). Accordingly, the

posterior over the latent modes is given by pΘ(zt|yt, xt) = pΘ(yt|xt,zt)pΘ(zt|xt)
pΘ(yt|xt)

,

where pΘ(yt|xt, zt) and pΘ(zt|xt) denote the likelihood and the prior, respec-
tively.

With this setting, the piecewise regression problem is formalized as follows:

Problem 1 We aim to estimate the parameters Θ of the piecewise model defin-
ing the data-generating distribution pΘ(yt|xt) (corresponding to task T1) and to
estimate the unknown posterior distribution pΘ(zt|yt, xt) over the latent modes,
consequently identifying the mode sequence {zt}Nt=1 which characterizes a parti-
tion of the regresor space (i.e., task T2).

4 Amortized variational inference

For inference of the piecewise models, we adopt the variational autoencoder
(VAE) introduced in [10]. Here, we briefly describe the concepts employed
in VAE. Let y be the observed data and z denote the latent variables. In
a Bayesian formalism, the probabilistic model is characterized by the likeli-
hood pθ(y|z) and a prior pθ(z) over the latent variables, with model parameters
θ. Then, the posterior distribution pθ(z|y) over z is obtained through Bayes

rule: pθ(z|y) = pθ(y|z)pθ(z)
pθ(y)

. However, often the evidence pθ(y) is intractable

to compute, and consequently the posterior distribution pθ(z|y) is not directly
accessible. VAE overcomes the intractability of the posterior by introducing a
variational distribution qϕ(z) parameterized via a neural network (viz. amor-
tized variational inference), chosen in order to approximate the true unknown
posterior pθ(z|y). In particular, the parameters of qϕ(z) are given by a (prob-
abilistic) encoder network, while the decoder neural network characterizes the
likelihood pθ(y|z). The goal is then to minimize the KL divergence between the
variational distribution and the true posterior DKL(qϕ(z)||pθ(z|y)) (in order to
enforce regularization over latent space) and to maximize log marginal likelihood
log(pθ(y)) (for learning model parameters θ), i.e., training the encoder-decoders
networks by maximizing the following loss over the network parameters ϕ, θ,

Lθ,ϕ(y) = log(pθ(y))−DKL(qϕ(z)||pθ(z|y)).

Note that both the terms above are intractable to compute. Nonetheless, the
loss Lθ,ϕ(y) can be equivalently written as

Lθ,ϕ(y) = Ez∼qϕ(z) [log(pθ(y|z))]−DKL(qϕ(z)||pθ(z)),
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Figure 1: Autoencoder architecture for PWA regression.

which is the so called evidence lower bound (ELBO) loss as log(pθ(y)) ≥ Lθ,ϕ(y).
The first term in the ELBO loss represents the ‘reconstruction error’ while

the second term is the KL divergence between the prior and the approximate
posterior, both of which can now be computed. In order to perform back-
propagation through both the encoder and decoder at once, the re-parameterization
trick is used which allows generating latent samples z ∼ qϕ(z), and thus, to
compute gradients of the expectations in the ELBO loss.

In this work, we adapt and specialize the VAE concept for piecewise re-
gression. In particular, the encoder characterizes a partition of the regressor
space by recognizing active modes zt, while the weights and biases of the de-
coder network represent the parameters Θ of the local submodels. In order to
the compute posterior over the discrete latent modes zt and to estimate the
parameters Θ, we derive the corresponding ELBO loss for the piecewise mod-
els. By parameterizing encoder posterior with a categorical distribution, the
expectation terms in the ELBO loss can be computed analytically, and thus,
we avoid sampling and re-parameterization trick employed in the conventional
VAE, reducing the computational effort during training.

4.1 VAE architecture for piecewise regression

We consider VAE network architecture shown in Fig. 1.
Encoder :
The encoder NN e(xt;ϕ) is a feed-forward neural network with trainable

parameters ϕ and with the regressor xt fed as input feature. The last layer
of the encoder consists of a softmax activation function taken over K modes.
Thus, the output of the encoder µt ∈ RK represents the probability of each
mode at time t, given by

µt = NN e(xt;ϕ), (6)

where

µi
t = p(zit = 1), µi

t ∈ [0, 1], i = 1, . . . ,K,

K∑
i=1

µi
t = 1
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with zt being the discrete latent variable characterizing the active mode as
defined in (5).

Decoder:
For PWA model, we define a decoder consisting of K independent neural

networks, each corresponding to an affine submodel in the PWA map (1). Each
of the K network consists of a single linear layer, weights (and biases) of which
correspond to the parameters θi ∈ Rnx , i = 1, . . . ,K of the local affine function.
The feature inputs to the i-th network are the regressor xt and the probability
of the i-th mode µi

t obtained from the encoder. The output of the i-th network

is then given by ŷit = θ̂
′

i

[
µi
t

xt

]
+ bi with θ̂

′

i and bi denoting the weights and

bias of the network respectively. Given that the current active mode is i with
probability µi

t = 1, the i-th network’s weights and biases correspond to the
parameters θi of the affine submodel in (1).

The decoder output is the weighted sum of the individual network’s outputs
given by

ŷt =

K∑
i=1

µi
tθ

′

i

[
1
xt

]
(7)

This is equivalent to the probability weighted affine (PrA) model (2) with prob-
abilities given by the encoder. As noted before, such PrA model provides a
smooth relaxation of PWA model in (1), such that the deterministic partition
is replaced by probabilistic boundaries. This particular structure of the decoder
along with categorical parameterization of the encoder distribution allows us to
compute the expected likelihood over latent space analytically.

Alternatively, in order to learn PWN and NPWN models, we can consider
a non-linear decoder consisting of K independent feed-forward MLP neural
networks having weights θi, with inputs xt, µ

i
t and output ŷit = NN d(xt, µ

i
t; θi).

Each network corresponds to local non-linear submodel and the decoder output
is given by the probability weighted sum of K non-linear network outputs,
ŷt =

∑K
i=1 µ

i
tNN d(xt, µ

i
t; θi).

5 ELBO loss

In order to train the VAE for piecewise models described above, in this section,
we derive the evidence lower bound loss L(ϕ,Θ) to be optimized over the encoder
and decoder parameters.

5.1 Prior

Let us define the prior over the latent modes zt as the following categorical
distribution,

p(zt|xt) =

K∏
i=1

(πi
t)

zi
t (8)
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where πi
t ∈ [0, 1] is the prior probability of the i-th mode, i.e., πi

t = p(zit = 1).
Recall that zt is K dimensional 1-of-K encoded categorical variable with the
property that exactly one element has value 1 and the others have the value 0,
thus, probability mass function p(zt|xt) = p(zit = 1) for the active mode i.

This allows incorporating prior knowledge about the initial clustering pat-
tern of the system. The prior probabilities can also be estimated via unsu-
pervised k-means algorithm or estimating a Gaussian mixture model. Possible
choices for prior distribution are provided in the following. Uniform prior: We
can set πi

t =
1
K , i.e., p(zt|xt) =

1
K , to weigh all modes equally.

Dirichlet hyperprior: Let α = [α1 . . . , αK ] be concentration hyperparameter
of a Dirichlet distrbution Dir(K|α). The prior probabilities are then given by

πt = [π1
t , . . . , π

K
t ] ∼ Dir(K|α) ∼ 1

B(α)

K∏
i=1

(πi
t)

αi−1,

The choice of hyperparameter α determines the priorities assigned to a specific
mode.

5.2 Likelihood

For PWA model structure, the likelihood of the output observation at time t is
given as follows

pΘ(yt|zt, xt) = pθi(yt|xt, z
i
t = 1)

= N (yt; θ
′

i

[
1
xt

]
, σ2

vIny
)

=

K∏
i=1

(N (yt; θ
′

i

[
1
xt

]
, σ2

vIny
))z

i
t , (9)

where we recall, σ2
v is the variance of the measurement noise. Since the noise

samples vt in (4) are assumed to be i.i.d., the overall likelihood is composed of
product over the likelihood of individual observations given as follows,

pΘ(y1, · · · , yT |z1, · · · , zT , x1, · · · , xN ) =

T∏
t=1

K∏
i=1

(N (yt; θ
′

i

[
1
xt

]
, σ2

vIny
))z

i
t (10)

The likelihood for PWN and NPWN model class (3) can be derived in a similar
manner.

5.3 Variational distribution

The encoder provides a distribution over discrete latent variable zt parameter-
ized as the following categorical distribution,

qϕ(zt|xt) =

K∏
i=1

(µi
t)

zi
t (11)
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where µi
t ∈ [0, 1], i = 1, . . .K are the probabilities given by the encoder output

(see (6)) and ϕ are the weights of the encoder network. Note that the true
unknown posterior pΘ(zt|xt, yt) is approximated by the variational distribution
qϕ(zt|xt) given by the encoder.

5.4 Evidence lower bound

Next, we derive the expression for the evidence lower bound. We recall that the
Kullback–Leibler (KL) divergence between the distribution qϕ(zt|xt), given by
the probabilistic encoder network and the true (unknown) posterior pΘ(zt|yt, xt)
can be written as,

DKL(qϕ(zt|xt)||pΘ(zt|xt, yt)) =

log(pΘ(yt|xt)) + DKL(qϕ(zt|xt)||p(zt|xt))− Ezt∼qϕ(zt|xt) [log pΘ(yt|zt, xt)] (12)

where pΘ(yt|xt) is the marginal likelihood or the evidence. Note that the left
hand side of (12) is the KL divergence between the two distributions, it is always
non-negative. Thus, the evidence is lower bounded by the following term,

log(pΘ(yt|xt)) ≥ Ezt∼qϕ(zt|xt) [log pΘ(yt|zt, xt)]−DKL(qϕ(zt|xt)||p(zt|xt))

(13)

The right hand side of (13) is the evidence lower bound (ELBO) of the data
sample at t.

Re-writing (12), we define the ELBO loss LΘ,ϕ(xt, yt) as follows

LΘ,ϕ(xt, yt)

= log(pΘ(yt|xt))−DKL(qϕ(zt|xt)||pΘ(zt|xt, yt)) (14a)

= Ezt∼qϕ(zt|xt) [log pΘ(yt|zt, xt)]−DKL(qϕ(zt|xt)||p(zt|xt)) (14b)

Note that from (14a), maximizing the ELBO loss LΘ,ϕ implies maximization
of the log marginal likelihood log(pΘ(yt|xt)) for model learning from data and
forcing the approximate posterior qϕ(.) towards the true one by minimizing the
KL distance DKL(qϕ(·)||pΘ(zt|xt, yt), in order to have regular latent structure.
However, both of these terms are intractable to compute. Nonetheless, this
objective is achieved by considering the ELBO loss given in (14b), where the
constitutive terms can be computed analytically. Thus, the goal is to maximize
the ELBO loss LΘ,ϕ given in (14b) w.r.t. both the encoder parameters ϕ and
the decoder parameters Θ.

We now compute both the terms of the loss LΘ,ϕ in (14b) for PWA model.
Reconstruction error: The first term in (14b) is the averaged log likelihood of

the model over the approximate posterior distribution. This term is equivalent
to “reconstruction or fitting error” in an autoencoder which drives learning of
the model from data.
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Substituting the expression of the likelihood (9), we have

Ezt∼qϕ(zt|xt) [log pΘ(yt|zt, xt)]

= Ezt∼qϕ(zt|xt)

[
log

K∏
i=1

(N (yt; θ
′

i

[
1
xt

]
, σ2

vIny
))z

i
t

]

= Ezt∼qϕ(zt|xt)

[
K∑
i=1

zit log(N (yt; θ
′

i

[
1
xt

]
, σ2

vIny
))

]

= Ezt∼qϕ(zt|xt)

[
−1

2σ2
v

K∑
i=1

zit

∥∥∥yt − θ
′

i

[
1
xt

]∥∥∥2 + const

]

=
−1

2σ2
v

K∑
i=1

µi
t

∥∥∥yt − θ
′

i

[
1
xt

]∥∥∥2 + const (15)

Given the categorical approximate posterior distribution qϕ(zt|xt) of the encoder
in (11), the last equality in (15) is obtained using the fact that Ezt∼q(zt|xt)

[
zit
]
=

µi
t for the categorical variable zt.
Equivalently, for the probability weighted affine model (PrA) of the decoder,

we have,

Ezt∼qϕ(zt|xt) [log pΘ(yt|zt, xt)] =
−1

2σ2
v

∥∥∥∥∥yt −
K∑
i=1

µi
tθ

′

i

[
1
xt

]∥∥∥∥∥
2

, (16)

and for piecewise non-linear models (PWN and NPWN), we have,

Ezt∼qϕ(zt|xt) [log pΘ(yt|zt, xt)] =
−1

2σ2
v

∥∥∥∥∥yt −
K∑
i=1

µi
tNN d(xt, µ

i
t; θi)

∥∥∥∥∥
2

, (17)

where NN d(·) is the non-linear MLP decoder network.
Regularization over latent variables: The second term in (14b) is KL diver-

gence between the (approximate) posterior (11) and prior over latent variables
defined in (8). This acts as a regularization term and provides a consistent
structure to the latent space.

Substituting (8) and (11), in the second term of (14b) we have,
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DKL(qϕ(zt|xt)||p(zt|xt))

= Ezt∼qϕ(zt|xt)

[
log

(
qϕ(zt|xt)

p(zt|xt)

)]
= Ezt∼qϕ(zt|xt)

[
log

(∏K
i=1(µ

i
t)

zi
t∏K

i=1(π
i
t)

zi
t

)]

= Ezt∼qϕ(zt|xt)

[
K∑
i=1

zit log(µ
i
t)− zit log(π

i
t)

]

=

K∑
i=1

µi
t log

(
µi
t

πi
t

)
(18)

The last equality follows as Ezt∼qϕ(zt|xt)

[
zit
]
= µi

t.

For a uniform prior, we have πi
t =

1
K , thus the KL term simplifies to

K∑
i=1

µi
t log

(
µi
t

πi
t

)
=

K∑
i=1

µi
t log

(
µi
t

)
− log(1/K)

The first term can be interpreted as the (negative) mode entropy which al-
lows to control potential mode collapse during the training. We note that
limµi

t→0 µi
t log

(
µi
t

)
= 0, thus, the regularization term is set to 0 for non-active

modes having small probability values.
Substituting the expressions of fitting error (15) and regularization loss (18)

in the ELBO (14b) and averaging over all data samples, we get the following
loss function

LΘ,ϕ({xt, yt}Tt=1) =
1

T

T∑
t=1

K∑
i=1

(
−µi

t

∥∥∥yt − θ
′

i

[
1
xt

]∥∥∥2 − λµi
t log

(
µi
t

πi
t

))
, (19)

where λ is a regularization hyper-parameter to achieve trade-off between recon-
struction error and regularization loss. The encoder and decoder networks are
trained at once to compute the parameters ϕ,Θ via back-propagation of the loss
(19) over training data. The estimate ϕ defines an encoder which approximates
the posterior pΘ(zt|yt, xt) characterizing the partition of the regressor space,
while decoder parameters Θ give the parameters of the local submodels of the
piecewise hybrid model, thus, solving Problem 1.

6 Numerical examples

The effectiveness of the proposed technique is evaluated on four examples,
namely, PWA function regression, a benchmark PWA-ARX identification, a
nonlinearly piecewise NPWA-ARX identification example and PWNL model

12



4 3 2 1 0 1 2 3 4
x1

4
3
2
1
0
1
2
3
4

x 2

4 3 2 1 0 1 2 3 4
x1

4
3
2
1
0
1
2
3
4

x 2
Figure 2: True partition induced by (21) (left panel) and estimated clusters
(right panel).

learning. All computations are carried out on an i7 1.9-GHz Intel core proces-
sor with 32 GB of RAM. The codes are implemented with PyTorch 1.12.1 for
the training of the neural networks.

The quality of the trained models is assessed in terms of their ability to
recognize the partition of the regressor space and their predictive capability
quantified via R2 score computed on a test dataset:

R2 =

(
1−

∑T
t=1(yt − ŷt)

2∑T
t=1(yt − ȳ)2

)
× 100 %, (20)

where y is the measured output, ŷ is the estimated model output and ȳ is the
average value of y, i.e., ȳ = 1

T

∑T
t=1 yt.

For all the examples reported in this section, we have chosen a uniform prior
p(zt) =

1
K . The number of hidden layers and number of nodes in each layer of

encoder-decoder networks are tuning hyper-parameters of the VAE, which are
chosen via cross-validation.

6.1 Example 1: Piecewise affine function

In this example, we consider the following PWA data-generating function char-
acterized by K = 5 modes,

f(x) = max

{[
0.8031
0.0219
−0.3227

]′ [ x1
x2
1

]
,
[

0.0942
−0.5617
−0.1622

]′ [ x1
x2
1

]
,[

0.9462
−0.7299
−0.7141

]′ [ x1
x2
1

]
,
[−0.4799

0.1084
−0.1210

]′ [ x1
x2
1

]
,
[

0.5770
0.1574
−0.1788

]′ [ x1
x2
1

]}
. (21)
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Table 1: True vs estimated model parameters (weights and biases of the decoder
network).

Mode True Estimated
1 [ 0.8031, 0.0219, −0.3227 ] [ 0.8021, 0.0226, −0.3209 ]
2 [ 0.0942, −0.5617, −0.1622 ] [ 0.0938, −0.5613, −0.1614 ]
3 [ 0.9462, −0.7299, −0.7141 ] [ 0.9462, −0.7298, −0.7141 ]
4 [−0.4799, 0.1084, −0.1210 ] [−0.4798, 0.1083, −0.1205 ]
5 [ 0.5770, 0.1574, −0.1788 ] [ 0.5777, 0.1567, −0.1768 ]

We gather a dataset consisting of 1000 target-feature samples from (21),
with features x ∈ R2 uniformly distributed in the box [−4, 4 ] × [−4, 4 ]. We
use N = 800 samples for training and remaining 200 samples as a test dataset.
In Fig. 2 (left panel), the true partition induced by the PWA function (21) is
shown.

The encoder is chosen as a single-hidden-layer linear network with 8 neurons.
The output layer consists of 5 nodes, corresponding to the number of modes
in (21) with a softmax activation. The decoder consists of 5 linear networks, each
with a single layer corresponding to the parameters of the affine functions in (21).
The VAE is trained by maximizing the loss function (19) setting λ = 1 · 10−4,
by employing Adam algorithm with a learning rate 1 · 10−2 and number of
stochastic gradient descent (SGD) iterations fixed to 20 ·103. The time required
for training is 79.6 sec.

The final clustering of the features obtained with the trained VAE is shown
in the right panel of Fig 2. It can be observed that in the noise-free setting,
the model is able to recognize the underlying partition of the feature space very
accurately.

Weights and biases of the decoder network are reported in Table 1. The
weights closely match with the true parameters of the affine function. Thus,
VAE is able to accurately identify the PWA data-generating function, both
in terms of recognizing the underlying partition as well as recovering the true
model parameters.

Next, the predictive capability and robustness of the model is evaluated using
a noisy dataset. In particular, the feature data x1,t, x2,t and target outputs
yt are corrupted by zero-mean white Gaussian noise with variance σ2, i.e.,
ϵx1
t , ϵx2

t , ϵyt ∼ N (0, σ2). In Table 2, we report the R2 scores of the trained model
computed on the test data for varying noise-levels σ = {0.0, 0.01, 0.1, 0.2}. In
the ideal case of σ = 0.0, the prediction accuracy is 100%, while high R2 scores
are achieved even in the presence of high noise levels. It is evident that the
learned model is robust against the noise and is able to reconstruct the output
with a high accuracy.
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Table 2: R2 scores with noisy data (xi + ϵxi , y + ϵy) where ϵxi , ϵy ∼ N (0, σ2), i
= 1,2.

Test σ = 0.00 σ = 0.01 σ = 0.10 σ = 0.20
R2 (%) 100.00 % 99.94 % 98.58 % 94.63 %

6.2 Example 2: Identification of PWA-ARX model

In this case study, we consider the following benchmark PWA-ARX system [2],
characterized by K = 3 modes

yt=


[−0.4 1 1.5 ]xt + et, if [ 4 −1 10 ]xt<0,

[ 0.5 −1 −0.5 ]xt + et, if [ 4 −1 10 ]xt ≥ 0,
& [ 5 1 −6 ]xt ≤ 0,

[−0.3 0.5 −1.7 ]xt + et, if [ 5 1 −6 ]xt > 0,

(22)

with regressor xt = [ yt−1 ut−1 1 ]
′
. The training dataset consist of T = 6000

input/output samples gathered from the system (22), with the input signal u
generated from a uniform random distribution taking values in [−4, 4]. The noise
et corrupting the output is a zero-mean white Gaussian noise et ∼ N (0, σ2) with

σ = 0.5, corresponding to the signal-to-noise ratio SNR = 10 log
∑T

t=1(yt−et)
2∑T

t=1 e2t
=

16 dB.
For estimation with VAE, we consider a single-hidden-layer network archi-

tecture for the encoder with relu activation function in the hidden layer and
softmax activation at the output layer. The number of nodes in the hidden
layer of the encoder is set to 8, while the number of output layer nodes is set
to K = 3 corresponding to the true number of modes. The decoder consists
of 3 linear networks, each with a single layer having dimension equal to the
dimension of the parameters of local affine function in (22). The VAE is trained
maximizing the loss function (19) with λ = 1 · 10−3. The learning rate is set
to 1 · 10−3 and number of SGD iterations are fixed to 20 · 103. The required
training time is 99.6 sec.

An independent noise-free test dataset of 2000 samples is generated to asses
the performance of the PWA model. The R2 scores obtained on the test data
computed using one-step-ahead predicted output is R2 (1− step) = 99.43%
and using simulated output is R2 (sim) = 85.15%2. The obtained scores show
that the true output is accurately reconstructed by the estimated model. The
parameters of the local affine models (decoder weights and biases) are reported
in Table 3, which closely match the true system parameters for all 3 modes.

2for computing R2 (sim), estimated past outputs are considered to construct the regressor
in order to predict the current output, while R2 (1-step) is computed with measured past
outputs in the regressor.
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Table 3: True vs estimated model parameters (weights and biases of the decoder
network).

Mode True Estimated
1 [−0.4, 1, 1.5 ] [−0.39, 0.99, 1.57 ]
2 [ 0.5, −1, −0.5 ] [ 0.50, −1.00, −0.52 ]
3 [−0.3, 0.5, −1.7 ] [−0.31, 0.50, −1.67 ]

4 2 0 2 4
yt 1

4
3
2
1
0
1
2
3
4

u t
1

Figure 3: PWA-ARX model: True partition (solid black lines) vs estimated
clustering of the regressor space.

Table 4: R2 scores computed based on one-step-ahead prediction (1-step) and
with simulated output (sim) for varying noise levels.

Test data σ = 0.1 σ = 0.3 σ = 0.7
SNR = 30 dB SNR = 20 dB SNR = 13 dB

R2 (1-step) 99.53 % 99.65 % 99.28 %
R2 (sim) 97.19 % 96.02 % 82.43 %

The estimated clustering pattern of the regressor space is depicted in Fig. 3.
It can be seen that the true underlying partition of the data-generating sys-
tem (22) has been accurately recognized by the trained encoder network with
each regressor being assigned to the correct operating mode. Finally, the ro-
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bustness of the model against different noise conditions is tested. The R2 scores
computed on test data using one-step-ahead prediction and using simulation are
reported in Table 4. The results show that the model is able to reconstruct the
output fairly accurately even in the presence of high noise levels.

6.3 Example 3: Identification of NPWA-ARX model

In this example, we consider estimation of nonlinearly piecewise affine system.
Specifically, we consider the following data-generating system as a slight modi-
fication to the PWA-ARX system (22), which can be conceived as an extension
to the nonlinearly piecewise affine model [12, 5]:

yt=


[−0.4 1 1.5 ]xt + et, if [ 4 −1 10 ]xt<0,

[ 0.5 −1 −0.5 ]xt + et, if [ 4 −1 10 ]xt ≥ 0,
& [ 5 1 −6 ]xt ≤ 0,

[−0.4 1 1.5 ]xt + et, if [ 5 1 −6 ]xt > 0,

(23)

where e ∼ N (0, σ2) with σ = 0.3, which corresponds to the SNR = 19 dB. A
training dataset of 6000 samples and a noise-free test dataset of 2000 samples
is gathered.

Here, the system with K = 2 local affine models is assumed to introduce
nonlinear partitioning requirements. We remark that the problem could be
solved by considering a PWA-ARX model with K = 3 modes and linearly
separable clusters. However, in this example, we aim to infer nonlinearly PWA-
ARX (NPWA-ARX) model by considering only K = 2 modes with a nonlinear
boundary between mode 1 and mode 2. Note that the system is defined by
the same dynamics occurring over two regions of the regressor space, although,
identification methods which rely on linear partition of the regression space
would require three modes as the regions are not linearly separable.

For estimation with VAE, we consider encoder network having a single-
hidden-layer with relu activations in the hidden layer and softmax activation at
the output layer. The number of nodes in the hidden layer of the encoder is set
to 10, while the number of output layer nodes is set to K = 2. The decoder
consists of 2 linear networks, each with a single layer having dimension equal
to the dimension of the parameters of local affine function in (23). The VAE is
trained by maximizing the loss function (19) with λ = 1 · 10−3. The learning
rate is set to 1 · 10−3 and number of SGD iterations are fixed to 20 · 103. The
required training time is 92.5 sec.

The estimated clustering pattern is shown in Fig. 4. It can be seen from the
figure that despite nonlinear partitioning induced by the data-generating sys-
tem, the encoder is able to recognize the underlying operating regions of the two
dynamics very accurately. The parameters of the local affine models (decoder
weights and biases) are reported in Table 3, which closely match the true sys-
tem parameters for both modes. Finally, the R2 score obtained on the test data
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Figure 4: NPWA-ARX model: True partition (solid black lines) vs estimated
clustering of the regressor space.

Table 5: True vs estimated model parameters (weights and biases of the decoder
network).

Mode True Estimated
1 [−0.4, 1, 1.5 ] [−0.4032, 1.0006, 1.5034 ]
2 [ 0.5, −1, −0.5 ] [ 0.5047, −1.0012, −0.5054 ]

computed using one-step-ahead predicted output is R2 (1− step) = 99.68% and
using simulated output R2 (sim) = 96.77%, which shows the estimated model
is able to reconstruct the output with high accuracy.

6.4 Example 4: Identification of PWNL model

In this example we consider the following PWNL data-generating function [16],

yt=


−2 + 0.1 log(1−xt) + et, if xt≤0,

−1 + 0.01xt + sin(xt)/xt + et, if 0 < xt ≤ 10,

2 + 0.2 exp
(

−1
2

(xt−15)2
5

)
xt + et, if 10 < xt ≤ 20,

(24)
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Figure 5: PWNL model: True function (dashed black lines) vs estimated sub-
models and clustering.

where e ∼ N (0, σ2) with σ = 0.3, which corresponds to the SNR = 15 dB. A
training dataset of 6000 samples and a noise-free test dataset of 2000 samples
is gathered from (24) with xt uniformly distributed in [−15, 20].

For inference, we consider fully-connected encoder network having a single-
hidden-layer with relu activations in the hidden layer and softmax activation at
the output layer. The number of nodes in the hidden layer of the encoder is set
to 16, while the number of output layer nodes is set to K = 3. The decoder
consists of 3 fully connected networks, each having a single hidden layer with
number of nodes set to 8 and relu activation. The VAE is trained by maximizing
the loss function (19) with λ = 1 · 10−2. The learning rate is set to 1 · 10−3 and
number of SGD iterations are fixed to 20 · 103. The required training time is
155.7 sec.

The estimated function along with the estimated clustering pattern is shown
in Fig. 5. It can be seen from the figure that partition of the input data
in the three regions is accurately recognized by the VAE. At the same time,
the local non-linear functions have been approximated fairly accurately by the
trained decoder networks. Finally, the R2 scores obtained over the test dataset
is R2(test) = 99.68%, which shows high prediction accuracy of the estimated
model.

7 Conclusion and future works

We have presented a framework for learning piecewise models using specialized
variational autoencoder. In contrast to the traditional black-box deep learning
models, the developed VAE is interpretable, in the sense that the latent space
can be interpreted in terms of the modes of the underlying hybrid system while
the decoder represents local submodels. The developed approach is effective to
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identify a general class of piecewise models as demonstrated in numerical case
studies. Future works involve extension of the proposed method to PWA state-
space models and investigating other variants of VAE, e.g., vector quantized
(VQ-VAE) for data-driven modeling and control of hybrid systems.
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