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Abstract— We propose a direct data-driven method for the
concurrent computation of polytopic robust control invariant
(RCI) sets and associated invariance-inducing control laws for
linear parameter-varying (LPV) system. We present a data-
based covariance parameterization of the gain-scheduled con-
troller and the closed-loop dynamics, utilizing a persistently
exciting state-input-scheduling trajectory gathered from the
LPV system. This parameterization, along with the assumption
of bounded cross-covariance noise, allows us to express the
invariance condition as a set of data-based LMIs, such that the
number of decision variables is independent of the length of the
dataset. These LMIs are combined with state-input constraints
framed as simple affine inequalities in a convex semi-definite
program with an objective to maximize the volume of the
RCI set. A numerical example demonstrates the computational
effectiveness of the proposed method in synthesizing RCI sets
even with large datasets.

I. INTRODUCTION

A subset of the state-space is termed as a robust control
invariant (RCI) set if, for a feasible controller, the states of
the system initialized within the set remain in that set ad
infinitum, for all bounded disturbances acting on the sys-
tem [5]. Characterizing an RCI set and invariance-inducing
controllers for a constrained dynamical system is crucial
for its stability analysis and for guaranteeing safety [6].
For linear parameter-varying (LPV) systems, several model-
based approaches have been proposed in the literature to
compute RCI sets and associated controllers, see e.g., [11],
[12], [19], [23]. These methods assume the knowledge of an
accurate LPV model of the system, which is anything but
trivial to derive either from first principles or from gathered
data [24].

To overcome the challenges of model-based control design
approaches, recent contributions have advocated direct data-
driven control paradigm [2], [7], [8], [20], synthesizing con-
trollers directly from the data, without requiring a model of
the system and obviating the need of an intermediate system
identification step. In the context of invariant set computation
problem, direct data-driven algorithms to synthesize RCI
sets and invariance-inducing controllers have been presented
in [1], [4], [14], [27] for linear time-invariant (LTI) systems,
while for LPV systems, to the best of our knowledge, only
recent works [15], [16] have addressed concurrent RCI set
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and controller synthesis. The methods in [15], [16] follow the
set-membership paradigm [17] or a resembling data infor-
mativity [25] framework: an invariance-inducing controller
is sought for all consistent LPV matrices compatible with
the data and satisfying a given noise bound, rather than
a singleton. Enforcing invariance condition robustly for all
matrices in the feasible model set, renders the obtained set
invariant for the true system as well. Note that, this result
comes at a price of conservatism stemming from the lack
of model knowledge, which, nonetheless can be reduced by
increasing the number of gathered data samples. The reason
being that the feasible model set ‘shrinks’ as the number of
data samples increase. However, the procedures to enforce
invariance proposed in [15], [16] introduce decision variables
whose size grows with the length of the dataset, making them
inefficient and potentially prohibitive for large datasets.

To overcome this issue, we present an alternative ap-
proach based on a data-driven covariance parameterization
of the controller along with an additional assumption of
bounded cross-covariance noise. We show that under these
parameterization and assumption, RCI sets can be computed
with a significantly lower computational expense for large
datasets. To this end, we built upon the method presented
in [15], namely, the set invariance is guaranteed robustly
for all scheduling parameters and disturbances in given sets
using a gain-scheduled state-feedback controller, by employ-
ing a full block S-procedure. However, unlike the data-
based parameterization of the feasible model set considered
in [15], we devise a parameterization of the controller which
consequently characterizes a data-based representation of the
closed-loop LPV matrices. This allows us to focus directly on
the closed-loop dynamics over which we wish to have safety
guarantees. To achieve this, we suitably adapt and extend the
covariance policy parameterization recently introduced in [9]
for LTI systems, to gain-scheduled controllers in the LPV
setting. This parameterization choice results in a number of
decision variables that do not increase with the length of the
dataset, thereby overcoming the limitation of the data-based
closed-loop LPV representation adopted in [26].

Furthermore, by assuming cross-covariance noise bounds
(similar to those considered in [22] for LTI systems) between
the disturbance vector and a variable constructed from state-
input-scheduling vectors, we show that data-based invariance
conditions can be formulated such that the number of deci-
sion variables in the LMIs remains constant, regardless of
the dataset length. As the cross-covariance noise bounds are
in general not known a priori, we also present a method to
approximate such bounds from the available information.



The paper is organized as follows: The problem addressed
in this work is formalized in Section II. The proposed data-
based controller parameterization and closed-loop dynamics
are introduced in Section III. In Sections IV, we present
tractable, data-driven reformulations of the state/input con-
straints. In Section V, we introduce cross-covariance noise
bounds and present a method for their estimation. Our main
result is presented in Section VI, where we derive data-based
LMI conditions to compute the RCI sets and controllers. The
effectiveness of the proposed algorithm is showcased via a
numerical example in Section VII. The paper concludes with
some remarks and directions for future work.

Notations and Preliminaries

Let Nn
m := {m, . . . , n} denote a set of natural numbers

between two integers m and n, m ≤ n. An identity
matrix of size n × n is denoted by In and 1n denotes
the n-dimensional vector of all-ones. We denote by
P ≻ 0 (⪰ 0) a positive (semi) definite matrix P . The
⋆’s within an LMI denote the symmetric matrix entries[

A B
B⊤ C

]
:= [A B

⋆ C ]. For two vectors a, b ∈ Rn, a ≤ b denotes
element-wise inequality. Given a matrix A ∈ Rm×n,−→
A := [ a⊤

1 ··· a⊤
n ]

⊤ ∈ Rmn denote its vectorization, stacking
the columns aj , j ∈ Nn

1 . The convex-hull of a finite set
Θ := {θj ∈ Rn, j ∈ Nr

1}, is denoted by, Conv(Θ) :={
θ ∈ Rn : θ =

∑r
j=1 αjθ

j , s.t
∑r

j=1 αj = 1, αj ∈ [0, 1]
}

.
The Kronecker product between matrices A and B is
denoted by A ⊗ B. All unknown matrix variables to be
computed are written in a boldface font, e.g., W,K etc.

The following results will be used in the paper:
Lemma 1 (Vectorization): For matrices A ∈ Rk×l, B ∈

Rl×m, C ∈ Rm×n and D ∈ Rk×n, the matrix equation
ABC = D is equivalent to,

(C⊤ ⊗A)
−→
B =

−−−→
ABC =

−→
D

Lemma 2 (Quadratic Constraint for Polytopes [10]): A
symmetric polytopic set X := {x ∈ Rn : −h ≤ Hx ≤ h}
with h ∈ Rnx

+ , satisfies

X :=
⋂
Γ∈G

{x ∈ Rn : (h+Hx)⊤Γ(h−Hx) ≥ 0},

where G := {Γ : Γ ∈ Dnx
+ } is the set of diagonal matrices

with positive entries.

II. PROBLEM FORMULATION

Let us consider the following LPV A-affine (LPV-A [3])
structure with a constant input matrix as the data-generating
system:

xk+1 = A(pk)xk+Bouk+wk, (1)

where xk ∈ Rn is the state, uk ∈ Rm is the control input,
pk ∈ Rs is the scheduling parameter and wk ∈ Rn is the
disturbance vector, at time k. The matrix function A(pk)

depends linearly 1 on the scheduling parameter vector pk,

A(pk) =

s∑
j=1

pk,jA
j
o, (2)

where pk,j denotes the j-th element of pk ∈ Rs.
The LPV system (1) can be compactly written as,

xk+1 =
[
Bo A1

o · · · As
o

]︸ ︷︷ ︸
Mo

[
uk

pk ⊗ xk

]
+ wk. (3)

The system is subjected to the following polytopic con-
straints on the state, input, scheduling and disturbance sig-
nals, respectively:

X := {x : Hxx ≤ hx} , U := {u : Huu ≤ hu} , (4a)

P :=Conv({pj}, j ∈ Nvp
1 ) (4b)

W := {w : −1nw ≤ Hww ≤ 1nw} , (4c)

where hx ∈ Rnx , hu ∈ Rnu are given vectors, Hx, Hu, Hw,
are given matrices of compatible dimensions and {pj}, j ∈
Nvp

1 , are given vertices of the scheduling parameter set P .
Note that the states are affected by unknown disturbance
samples wk, which are assumed to belong to a bounded
known disturbance set wk ∈ W for all k ∈ N.

With these constraints, we aim to design an invaraince-
inducing scheduling parameter-dependent state-feedback
control law given by,

uk = K(pk)xk, (5)

where the function K(pk) is linearly dependent on pk, i.e.,

K(pk) =

s∑
j=1

pk,jK
j ,

and Kj ∈ Rm×n, j ∈ Ns
1 are feedback-gain matrices. By

defining K :=
[
K1 · · · Ks

]
∈ Rm×ns, the control law can

be expressed as,

uk = K(pk)xk = K(pk ⊗ xk). (6)

By substituting (6) in (3), the resulting closed-loop dy-
namics is given by,

x+ = Mo

[
K
Ins

]
(p⊗ x) + w, (7)

where the successor state xk+1 is denoted as x+, and the
time dependence of the signals is dropped for brevity.

Let us now consider the following polytopic set,

S :=
{
x ∈ Rn : −1nc ≤ CW−1x ≤ 1nc

}
, (8)

where C ∈ Rnc×n is a user-defined fixed matrix which
determines the representational complexity of the set, with
2nc being the number of hyperplanes, and W ∈ Rn×n is
the matrix to be computed such that the set S is an RCI set
according to the following definition:

1it can be considered affine in the parameter by adjoining a new constant
pk,0 = 1 to the scheduling vector p.



Definition 1 (Robust invariance): A set S ⊆ Rn is ro-
bustly invariant for the system (7), if for any given p ∈ P ,
there exists a controller gain matrix K such that

x ∈ S ⇒ x+ ∈ S, ∀w ∈ W. (9)
Moreover, the RCI set has to satisfy the state and input

constraints given in (4), S ⊆ X and K(p)S ⊆ U , i.e.,

x ∈ S ⇒ x ∈ X , (10)
x ∈ S ⇒ u = K(p⊗ x) ∈ U ∀p ∈ P. (11)

In this work, we assume that the system matrices Aj
o ∈

Rn×n, j ∈ Ns
1 and Bo in (3) are unknown, instead, we

assume that a dataset {xk, uk, pk}T+1
k=1 consisting of T + 1

state-input-scheduling samples generated from system (3) is
available.

We define the following data matrices,

X+ := [x2 x3 · · · xT+1] ∈ Rn×T , (12a)

U0 := [u1 u2 · · · uT ] ∈ Rm×T , (12b)

X0 := [p1 ⊗ x1 . . . pT ⊗ xT ] ∈ Rns×T , (12c)

and let us assume that the gathered data satisfies the follow-
ing condition:

Assumption 1 (Persistence of excitation): The matrix

Φ :=

[
U0

X0

]
∈ R(m+ns)×T (13)

has a full row rank, i.e., rank(Φ) = m+ ns.
With this setting, we now formalize the direct data-driven

invariant set computation problem addressed in this paper.
Problem 1: Given data matrices (X+, U0, X0) defined in

(12), the constraints sets (4) and a fixed matrix C in (8),
compute the matrix W defining the set S in (8) and feedback
controller gains K in (6) such that: (i) the set S is robustly
invariant for the closed-loop dynamics, satisfying condition
(9); (ii) the state and input constraints (10) and (11) are
satisfied; (iii) S has the largest possible volume.

III. DATA-DRIVEN PARAMETERIZATION OF THE
CONTROLLER AND CLOSED-LOOP DYNAMICS

In this section, we present a data-based parameterization
of the gain-scheduled controller in (6) and the associated
closed-loop LPV matrices. To this end, we adapt the sample
covariance policy parameterization introduced in [9] for the
LTI systems and extend it to our LPV setting.

Let Σp ∈ R(m+ns)×(m+ns) be the sample covariance
matrix defined as follows,

Σp :=
1

T

[
U0

X0

] [
U0

X0

]⊤
=

1

T
ΦΦ⊤, (14)

which we use to parameterize any given controller gain
matrix K in (6) as, [

K
Ins

]
= ΣpG, (15)

where G ∈ R(m+ns)×ns is the matrix variable to be
computed, whose dimensions are independent of the number

of data samples T . Thus, this parameterization is com-
putationally efficient for large datasets. Note that under
Assumption 1, the covariance Σp in (14) is positive definite
and there exists a unique matrix G satisfying (15).

As the data-matrices in (12) satisfy the system dynam-
ics (3), we have,

X+ = MoΦ+W0, (16)

where, W0 := [w1, · · · , wT ] is an unknown realization of the
disturbance signal belonging to the set W0 ∈ WT ⊂ Rn×T

defined as follows,

WT := {W : −1̄ ≤ HwW ≤ 1̄} , (17)

with 1̄ := [ 1nw 1nw ··· 1nw ] ∈ Rnw×T .
Let us now define the following matrices,

Up :=
1

T
U0Φ

⊤, Xp :=
1

T
X0Φ

⊤, (18a)

X+
p :=

1

T
X+Φ⊤, Wp :=

1

T
W0Φ

⊤. (18b)

From (16), the matrices in (18) satisfy the following dynam-
ics,

X+
p = MoΣp +Wp, (19)

where we note the matrix Wp is unknown, constructed from
an unknown true disturbance realization sequence W0 ∈ WT .

It follows that for a given feedback gain matrix K, the
closed-loop matrices of the true LPV system are given as,

Mo

[
K
Ins

]
= MoΣpG = (X+

p −Wp)G, (20)

with the following consistency conditions on G obtained
from (14) and (15),

K = UpG, (21a)
Ins = XpG. (21b)

Based on (20), the closed-loop dynamics (7) can be
expressed in terms of data, disturbance matrix Wp, and the
design parameter G as follows,

x+ = (X+
p −Wp)G (p⊗ x) + w. (22)

IV. CONVEX FORMULATIONS OF STATE, INPUT, AND
CONSISTENCY CONSTRAINTS

In this section, we present a coordinate transformation,
such that in the new coordinate space the candidate RCI set
is known. We enforce robust invariance of this set in the new
space. This allows us to express the state, input, consistency
constraints as well as the invariance condition as tractable
convex constraints.

Let us consider the following state transformation [11],

θ = W−1x ⇔ x = Wθ, (23)

and, the set S in (8) in the transformed θ-state-space is given
as,

S := {Wθ ∈ Rn : θ ∈ Θ} , (24)

where Θ is a symmetric set defined as follows:

Θ ≜ {θ ∈ Rn : −1nc
≤ Cθ ≤ 1nc

} . (25)



Note that the candidate invariant set Θ in the θ-state-space, is
a known symmetric set, as C is a known user-defined matrix.
The set Θ can be expressed as a convex hull of its known
vertices

{
θ1, . . . , θ2vθ

}
:

Θ = Conv
({

θi
}
, i ∈ N2vθ

1

)
, (26)

where vθ > 0 is determined by the choice of C. The
corresponding set S in the x-state-space will be completely
determined by W, which we aim to compute.

A. System constraints

We now express the state and input constraints (4) in
the θ-state-space with the transformation considered in (23).
Satisfaction of these inequalities constraints at the vertices
{θi}2vθ

i=1 ensures that they are satisfied over the whole set Θ
as well, due to convexity. We can write the state constraints
(10) in terms of W in the transformed space as follows:

HxWθ ≤ hx,∀θ ∈ Θ ⇔ HxWθi ≤ hx, i∈ N2vθ
1 (27)

Similarly, the control input constraints in (11) are given
by

HuK(pk ⊗Wθ) ≤ hu ⇔ HuUpG(pk ⊗Wθ) ≤ hu, (28)

where we have substituted the controller gain K in terms
of the data matrix Up as given in (21a). In order to resolve
the bilinearity between G and W in (28), let the matrix G
defined in (15) be written as G = [G1, · · · ,Gs] and let us
define new matrix variables Nl ∈ R(m+ns)×n for l ∈ Is1 as
follows:

N :=
[
N1 · · · Ns

]
=

[
G1W · · · GsW

]
, (29)

with Gl := NlW−1. The term on the left hand side of the
inequality in (28) can be expressed as,

G(pk ⊗Wθ) =
[
G1Wpk,1 + · · ·+GsWpk,s

]
θ

=
[
G1W · · · GsW

]︸ ︷︷ ︸
N

(pk ⊗ θ). (30)

and thus, the input constraints in (28) can be re-written as,

HuUpN(p⊗ θ) ≤ hu,∀(θ, p) ∈ (Θ,P) ⇔ (31)

HuUpN(pj ⊗ θi) ≤ hu, i ∈ N2vθ
1 , j ∈ Nvp

1 . (32)

Note that (31) and (32) are equivalent as the Kronecker
product map is linear in each of its arguments (p, θ) and
the sets P,Θ and U are convex.

B. Consistency constraints

Let us now express the consistency condition in (21b) in
terms of the introduced matrix variable N. Condition (21b)
can be re-written as

Ins = [XpN
1W−1 · · · XpN

sW−1],

leading to the following linear equality constraints,

IlW = XpN
l, l ∈ Ns

1, (33)

where Il ∈ Rns×n denotes the matrix constructed from the
corresponding columns of the identity matrix Ins.

C. Invariance conditions

We now express the system dynamics in the θ-state-space
and present conditions for the set Θ in (26) to be invariant.
Using (23) and (30), the closed-loop dynamics (22) can be
written as

x+ = Wθ+ = (X+
p −Wp)G(p⊗Wθ) + w,

= (X+
p −Wp)N(p⊗ θ) + w. (34)

Considering the closed-loop dynamics (34), we now state
two equivalent invariance conditions for the set Θ.

Lemma 3: If the set Θ in (25) is robustly invariant for
system (34) then the following two statements are equivalent:
(i) for all θ ∈ Θ, for any given p ∈ P , ∀w ∈ W ,

θ+ =
(
W−1(X+

p −Wp)N(p⊗ θ) +W−1w
)
∈ Θ.

(35)
(ii) for each vertex θi, i ∈ N2vθ

1 of the set Θ, and for each
vertex pj , j ∈ Nvp

1 of the set P , ∀w ∈ W ,

θi,j
+
:=
(
W−1(X+

p −Wp)N(pj ⊗ θi)+W−1w
)
∈ Θ.

(36)
Proof: See Appendix IX.

The second condition (36) in Lemma 3 allows us to
enforce robust invariance of the set Θ, at a finite set of
known vertices of P and Θ, thus, we will use condition
(36) to compute the RCI set and controller parameters.

V. CROSS-COVARIANCE NOISE BOUNDS

Note that the dynamics (34) and in turn, condition (36)
is parameterized in terms of matrix Wp which is unknown,
as it depends on a true realization W0 of the disturbance
sequence as defined in (18). To solve Problem 1 (point i), the
invariance condition (36) should be satisfied (conservatively)
for all possible realizations of the disturbance sequences
W0 ∈ WT , in turn, for all Wp in some set Wp. To this end,
let us now characterize a set Wp, by utilizing the known
disturbance bounds WT and available data. This set will be
later used to enforce (36) robustly for all Wp ∈ Wp.

We assume the following bounds on the sample cross-
covariance of the noise wk and a variable rk := [u⊤

k (pk ⊗
xk)

⊤]⊤ ∈ Rm+ns,

−cj ≤
1

T

T∑
k=1

wkrk,j ≤ cj , j ∈ Nm+ns
1 , (37)

where cj ∈ Rn
+ are given vectors and rk,j denotes the j-th

element of rk. The bounds in (37) define polyhedral bounds
on the sample cross-covariance of the disturbance wk and an
instrumental variable rk.

Then, from the definition of Wp in (18), bounds in (37)
can be expressed as,

Wp :=
{−→
Wp ∈ Rn(m+ns) : −wmax ≤

−→
Wp ≤ wmax

}
, (38)

where wmax := [c⊤1 · · · c⊤m+ns]
⊤ and

−→
Wp denotes the

vectorization of Wp.
Remark 1: For LTI systems, similar bounds were intro-

duced in [13] for parameter bounding identification and



analysed in [22] to provide informativity conditions for data-
driven control. The choice of the instrumental variable r and
estimating the bounds (37) from data are discussed in [13].
It is suggested to choose an instrument rk that is correlated
with the inputs, but uncorrelated with the noise wk. The
variable rk := [u⊤

k (pk⊗xk)
⊤]⊤ satisfies these requirements.

The characterization of Wp in (38) depends on the cross-
covariance bounds cj ∈ Rn

+ which are typically not available
in practice. For LTI case, strategies to estimate such bounds
from data are discussed in [13], under some assumptions on
the noise statistics. Instead, here we propose an alternative
approach that relies on the known bounds on the process
noise (see (17)), to estimate the cross-covariance bounds and
to approximate the set Wp in (38).

To this end, we recall that the true disturbance realization
belongs to the set

−→
W 0 ∈ WT where using Lemma 1, WT

in (17) can be expressed as,

WT :=
{−→
W : −1Tnw ≤ H̄w

−→
W ≤ 1Tnw

}
, (39)

with H̄w := (IT ⊗ Hw). By noticing that
−→
Wp := 1

T (Φ ⊗
−→
W0), the bounds wmax, wmin can be computed by solving
the following linear programs (LP):

e⊤j w
max := max−→

W∈WT

1

T
e⊤j (Φ⊗ In)

−→
W (40a)

e⊤j w
min := min−→

W∈WT

1

T
e⊤j (Φ⊗ In)

−→
W (40b)

for all j ∈ Nn(m+ns)
1 , where ej is the j-th column vector

of the identity matrix In(m+ns), wmax ∈ Rn(m+ns)
+ . As the

constraint set WT is symmetric wmin = −wmax and only
one of the LPs in (40) is required to be solved.

The invariance condition in (36) can be enforced for all−→
W p in Wp defined by (38) and (40) via the S-procedure. In
particular, we will employ Lemma 2 to express (38) in terms
of quadratic constraints as

(wmax +
−→
Wp)

⊤Λ(wmax −
−→
Wp) ≥ 0 (41)

with the matrix variable Λ ∈ Dn(m+ns)
+ to be computed.

Remark 2 (Efficiency vs conservativeness): Note that as
the number of variables Λ are independent of the length
of the data T , the proposed approach has a constant compu-
tational complexity O(1) w.r.t. T . Therefore, it is computa-
tionally efficient even for large datasets. This computational
advantage comes at the price of conservativeness, as the
set Wp is an outer-approximation of the true set Wo

p to
which

−→
W p belongs to, i.e., Wo

p ⊆ Wp. Characterizing tighter
approximations of the true set Wo

p will be investigated in
future works.

Remark 3 (Comparison with [15]): In [15], an invariance
inducing controller is sought for all feasible model matrices
consistent with open-loop data and known noise bounds. A
potential limitation of this approach is that the S-procedure
to enforce invariance for all model matrices introduces
number of decision variables which grows with the dataset
length T . This has been remedied in the present work by

employing a data-based covariance control parameterization
and assuming cross-covariance noise bounds. Unlike the
open-loop representation considered in [15], the present work
is focused on data-based closed-loop parameterization, in
particular, we remark that for some G satisfying (15), the
set MG :=

{
MG : MG := (X+

p −Wp)G, Ins = XpG
}

represents the superset of a set of all closed-loop LPV
matrices compatible with the data. The unknown matrix
Wp in the closed-loop dynamics introduces conservativeness,
nonetheless, we have shown that Wp is bounded in a set Wp

which can be characterized using known disturbance bounds
and the number of optimization variables required to enforce
invariance ∀Wp ∈ Wp does not grow with T .

VI. DATA-BASED LMI CONDITION FOR INVARIANCE

With these considerations, we now state and prove a data-
based sufficient condition to render the set Θ invariant with
an associated LPV controller parameterized as in (15).

Using the vectorization Lemma 1, we rewrite the closed-
loop dynamics (36) at the vertices θi, pj as follows:

Wθi,j
+
=X+

p N(pj⊗θi)︸ ︷︷ ︸
:=Gij(N)

−
((
N(pj⊗θi)

)⊤⊗In

)
︸ ︷︷ ︸

:=Fij(N)

−→
Wp+w, (42)

with i ∈ N2vθ
1 and j ∈ Nvp

1 . Let us introduce new matrix
variables Vijk ∈ Rn×n and signals ξijk := V−1

ijkWθi,j
+, for

k ∈ Nnc
1 , i ∈ N2vθ

1 , j ∈ Nvp
1 . With theses, the dynamics (42)

can be written as,

Gij (N)−Fij (N)
−→
Wp + w −Vijkξijk = 0. (43)

We now present the data-based sufficient LMI conditions
for the invariance in the following Theorem.

Theorem 4 (Data-based LMI conditions for invariance):
Given a fixed matrix C ∈ Rnc×n, if there exists W ∈ Rn×n,
N ∈ R(m+ns)×ns, and variables {ϕijk ∈ R+,Γijk ∈
Dnw

+ ,Λijk ∈ Dn(m+ns)
+ ,Xijk,Vijk ∈ Rn×n} that satisfy

the following constraints and LMIs

Ilns×nW = XpN
l, ∀l ∈ Ns

1, (44)[
W⊤ +W −Xijk ϕijkC

⊤ek
⋆ ϕijk

]
≽0, (45)


rijk 0 0 G⊤

ij (N) 0
⋆ Λijk 0 F⊤

ij (N) 0
⋆ ⋆ H⊤

wΓijkHw In 0
⋆ ⋆ ⋆ Vijk+V⊤

ijk V⊤
ijk

⋆ ⋆ ⋆ ⋆ Xijk

 ≽ 0, (46)

for k ∈ Nnc
1 , i ∈ N2vθ

1 and j ∈ Nvp
1 , where Gij (N) ,Fij (N)

defined as in (42), and

rijk := ϕijk− wmax⊤Λijkw
max −1⊤

nw
Γijk1nw

, (47)

then, the controller with state-feedback gains characterized
by K = UpG, with G computed as Gl = NlW−1 for
l ∈ Ns

1, renders the set S in (24) robust invariant.
Proof: The equality constraint (44) stems from the

controller parameterization constraints given in (33). The
remaining LMI conditions in (45)-(46) are proved as follows.



From the set definition (25), the invariance condition in
(36) can be written as, for all k ∈ Nnc

1 , i ∈ N2vθ
1 j ∈ Nvp

1 ,

1− (e⊤k Cθi,j
+
)2 ≥ 0, ∀w ∈ W, ∀

−→
Wp ∈ Wp, (48)

where ek is the k-th column vector of the identity matrix
Inc . By substituting the dynamics (43) in (48) we get,

1−(e⊤k CW−1Vijkξijk)
2 ≥ 0, ∀w ∈ W,∀

−→
Wp ∈ Wp. (49)

Following the S-procedure [21], we multiply (49) by a scalar
variable ϕijk > 0 and lower bound its left hand side by a
term which is non-negative for all

(
w,

−→
Wp

)
∈ (W,Wp) as:

ϕijk(1− (e⊤k CW−1Vijkξijk)
2) ≥

2ξ⊤ijk

(
Gij(N)−Fij(N)

−→
Wp + w −Vijkξijk

)
︸ ︷︷ ︸

0

+ (wmax +
−→
Wp)

⊤Λijk(w
max −

−→
Wp)︸ ︷︷ ︸

≥0

+ (1+Hww)
⊤Γijk(1−Hww)︸ ︷︷ ︸

≥0

, (50)

where we have employed Lemma 2 to express the symmetric
polytopic sets W,Wp as quadratic constraints, with Λijk ∈
Dn(m+ns)

+ ,Γijk ∈ Dnw
+ , as matrix decision variables.

A sufficient condition for invariance is obtained by re-
arranging (50) into the following quadratic form:

κ⊤Pijk(W,N,Λijk,Γijk,ϕijk,Vijk)κ ≽ 0, ∀κ, (51)

where κ⊤ :=
[
1 −

−→
Wp

⊤ w⊤ −ξ⊤ijk

]
and Pijk is a

symmetric matrix. The invariance condition is satisfied if
Pijk ≽ 0, i.e.,

rijk 0 0 G⊤
ij (N)

⋆ Λijk 0 F⊤
ij (N)

⋆ ⋆ H⊤
wΓijkHw In

⋆ ⋆ ⋆ Vijk+V⊤
ijk−V⊤

ijkLijkVijk

 ≽ 0,

(52)
where Lijk ≜ ϕijkW

−⊤C⊤eke
⊤
k CW−1 and rijk, is as

defined in (47).
To resolve the non-linearity in the block (4, 4) of (52), we

introduce a new matrix variable Xijk = X⊤
ijk ≻ 0 such that

X−1
ijk−Lijk≻0 ⇔ X−1

ijk−ϕijkW
−⊤C⊤eke

⊤
kCW−1≻0.

(53)
By applying Schur complement to (53) we have,[

X−1
ijk ϕijkW

−⊤C⊤ek
ϕijke

⊤
kCW−1 ϕijk

]
≻0, (54)

which using the congruence transformation matrix
diag{W, In}, can be rewritten as[

W⊤X−1
ijkW ϕijkC

⊤ek
ϕijke

⊤
kC ϕijk

]
≻0. (55)

The nonlinearity W⊤X−1
ijkW is resolved as follows,

W⊤X−1
ijkW=(W−Xijk)

⊤X−1
ijk(W−Xijk)+W+W⊤−Xijk

≽ W +W⊤ −Xijk (56)

Thus, replacing W⊤X−1
ijkW in (55) with W+W⊤−Xijk,

leads to a sufficient LMI condition for (55) as in (45), proving
the first LMI condition stated in Theorem 4.

From (53), the condition (52) can be rewritten as
rijk 0 0 G⊤

ij (N)
⋆ Λijk 0 F⊤

ij (N)
⋆ ⋆ H⊤

wΓijkHw In
⋆ ⋆ ⋆ Vijk+V⊤

ijk−V⊤
ijkXijkVijk

 ≽ 0,

which followed by Schur complement gives the second LMI
condition (46) stated in Theorem 4.

A. Volume maximization of the RCI set

As discussed in [11], [15], for a given C, the volume of
the invariant set S in (8) is proportional to |det(W)|. As in
[15], to maximize the volume of the RCI set, we formulate an
iterative determinant maximization problem while forcing it
to grow between successive iterations. At the q+1-th iteration
(with q ∈ N), we impose the following constraint:

W⊤W q + (W q)⊤W − (W q)⊤W q ≽ Wobj ≻ 0, (57)

where W q and Xq
ij are the values of the variables W, Xij

at the q-th iteration, and Wobj = W⊤
obj ∈ Rn×n is the

matrix to be optimized at the current iteration. This condition
imposes a growth in the determinant i.e., |det(W q+1)| ≥
|det(W q)| and, hence, of the RCI volume at each iteration.
By defining Zq

ijk := (Xq
ijk)

−1W q , the invariance condition
in (45) can then be rewritten as [15]:[

W⊤Zq
ijk+(Zq

ijk)
⊤W − (Zq

ijk)
⊤XijkZ

q
ijk ϕijkC

⊤ek
ϕijke

⊤
kC ϕijk

]
≽0.

(58)
Accordingly, the problem to be solved at the q+1-th iteration
is summarized as follows:

max log det(Wobj)
ZSDP

s.t. (57), (successive growth)
(27), (32), (state/input constraints)
(44), (consistency constraint)
(45), (46), (invariance LMIs)

(59)
where ZSDP ≜ (W,N,Xijk,Vijk,ϕijk,Λijk,Γijk,Wobj),
for k ∈ Inc

1 , i ∈ I2vθ1 , j ∈ Ivp1 .

B. Computational complexity

The SDP program in (59) features 2vθnx and 2nuvθvp
scalar inequalities associated with the state and input con-
straints, respectively; s equality constraints induced by the
controller parameterization constraint (33); 2ncvθvp LMI
constrains for set invariance (45)-(46). The number of rows in
LMI (45) are n+1 while those in (46) are 1+n(m+ns)+3n.
The total number of scalar optimization variables defining the
constraints and objective is 3n2+(mn+n2s)(s+1)+nw+1,
which scales quadratically with the state dimension n, but,
it is independent of data-length T .



VII. NUMERICAL EXAMPLE

We demonstrate the effectiveness of the proposed approach
via a numerical example. All algorithms have been imple-
mented on an i7-1.40 GHz Intel core processor with 16 GB
RAM running MATLAB R2023a, utilizing MOSEK [18] to
solve the SDP programs.

Let us consider as the data-generating system the
parameter-varying double integrator,

xk+1 =

[
1 + ζk 1 + ζk

0 1 + ζk

]
xk +

[
1
1

]
uk + wk, (60)

where |ζk| ≤ 0.2. The following state-input constraints are
imposed on the system,

X := {x : ∥x∥∞ <= 5}, U := {u : |u|≤3}.

The disturbance is assumed to be bounded in a set W =
{w : |w| ≤ 0.05}. The system can be expressed in the LPV-
A affine form in (1) with

A1 =

[
1.2 1.2
0 1.2

]
, A2 =

[
0.8 0.8
0 0.8

]
, B =

[
1
1

]
using pk,1 = 2(0.2 + ζk), pk,2 = 2(0.2 − ζk), with
scheduling parameter belongs to the set P = {p ∈ R2 :
p ∈ [0, 1], p1 + p2 = 1} = Conv([ 10 ] , [

0
1 ]). The system

matrices {A1, A2, B} are unknown and are not used for the
computation of the RCI set or the controller. A single state-
input-scheduling trajectory of T = 20 samples is gathered by
exciting the system (60) with input signal uniformly sampled
in the interval [−3, 3]. The measured states are corrupted
by a disturbance signal uniformly distributed in the interval
[−0.05, 0.05]. The collected data satisfies the rank condition
in Assumption 1, i.e, rank(Φ) = 5.

The cross-covariance bounds given in (37)
for this example are considered as: cj =
{0.0061n, 0.05921n, 0.01051n, 0.04031n, 0.00341n},
such that disturbance satisfies the wk ∈ W,∀k ∈ N20

1 . If
these bounds are assumed to be not known a priori, we
compute the worst-case approximation by solving the LP
(40). then, the computed bounds are given as wmax =
vec{0.08871n, 0.12931n, 0.02591n, 0.13831n, 0.05451n}.

We compute the RCI sets for the following two cases: 1)
RCI set denoted by S0: computed by assuming known cross-
covariance bounds; and 2) RCI set denoted by S1: computed
with unknown cross-covariance bounds, and estimated with
the available data solving LP in (40).

For analyzing the effect of choice of C defining the repre-
sentational complexity of the RCI set, in our tests, we choose
two different C matrices with representational complexities
nc = 2, 6. Each row of C is chosen as follows, see [11,
Remark 1]:e⊤i C =

[
cos

(
π(i−1)

nc

)
, sin

(
π(i−1)

nc

)]
, i ∈ Inc

1 .

The RCI set and the associated LPV state-feedback gain
matrices are computed by solving (59) for 5 iterations.

In Fig. 1, we plot the obtained RCI sets S0 for nc = 2, 6.
As seen from the figure, RCI set with nc = 6 is larger w.r.t. to
the one with nc = 2. The choice of C and its representational
complexity nc, affects the volume of the RCI set, and it can

(a) nc = 2 (b) nc = 6

Fig. 1: RCI sets S0 (violet) with closed-loop simulated
trajectories and state constraints set X (yellow).

Fig. 2: Control input u = K(p)x trajectories for the com-
puted state-feedback gain. Input constraints (dashed-red).

be used to achieve a trade-off between complexity vs size
of the set. The corresponding invariant set matrix W and
feedback control gains {K1,K2} are reported below:

nc = 2 :

 W
K1

K2

 =


3.8387 −1.1613
−1.1613 3.7635
−0.3015 −0.6685
−0.2863 −0.8583

 ,

nc= 6 :

 W
K1

K2

=


4.8976 −0.3940
−0.3940 4.6743
−0.2977 −0.5804
−0.3536 −0.5882


Fig. 1 also depicts closed-loop state trajectories starting

from each vertex of the RCI set and corresponding control
input trajectories are shown in Fig. 2, which shows that
the input constraints are satisfied during the closed-loop
simulation. The state trajectories are obtained by simulating
the true system (60) in closed-loop with the obtained state-
feedback controller u = K(p)x with each vertex of the
RCI set as the initial condition. Note that for each closed-
loop simulation, we generate a different realization of the
scheduling signal taking values in the given bound p ∈ [0, 1],
as well as a different realization of the disturbance signal

Fig. 3: Volume of S0 vs iterations of SDP (59)



Fig. 4: Volume vs representational complexity nc for
RCI sets, computed with known cross-covariance bounds
wmax (S0), estimated wmax (S1), set-membership approach
(Ssm) [15].

Fig. 5: Average computation time per iteration vs length of
the data set T .

w ∈ W acting on the system at each time instance. Hence,
in the presence of a bounded but unknown disturbance, the
result shows that the approach guarantees robust invariance
for all possible scheduling signals in a given set, while
always respecting the state and input constraints. The volume
of the RCI sets w.r.t. iterations of SDP in (59) is shown in
Fig. 3, it can be seen that no significant volume increase is
observed after 3 iterations.

In order to asses the size of the obtained sets, we compare
the volumes of the sets S0,S1 (obtained respectively by
known and estimated cross-covariance bounds), with RCI
sets Ssm computed by the set-membership approach [15],
as depicted in Fig 4 for varying representational complexity
nc. We observe that the proposed algorithm with data-based
closed-loop parameterization can produce RCI set that are
comparable in size to those given by [15]. The sets S1

computed with estimated bounds solving (40), have slightly
lower volumes. Estimated cross-covariance bounds leads to
an expected conservatism due to the over-approaximation and
hence, slightly smaller RCI sets.

The main advantage of the proposed approach over [15]
can be seen in terms of the computation time as shown in
Fig 5. As the number of data samples grows, the average
computation time to solve one iteration of SDP in (59)
does not increase, while it increases linearly with T when
considering one SDP iteration of Algorithm 1 in [15].

VIII. CONCLUSION

In this work, we proposed a direct approach based on data-
driven closed-loop parameterization, to compute RCI sets
and controllers for LPV systems, as an alternative to the di-
rect approach of [15]. Our results show that the proposed al-
gorithm generates RCI sets that are of comparable size to the
ones obtained with the set-membership framework in [15],
but it outperforms [15] from a computational perspective.
In particular, we have shown that assuming cross-covariance
noise bounds, the proposed method can be computationally
efficient in that the number of decision variables do not grow
with size of the dataset.

Future work will involve developing an algorithm in-
corporating performance guarantees within an RCI set and
extensions for switched dynamical systems.

IX. APPENDIX: PROOF OF LEMMA 3

Proof: (i) ⇒ (ii): For each vertex θi, i ∈ N2vθ
1 , and

pj , j ∈ Nvp
1 , it holds that θi ∈ Θ, pj ∈ P , thus, (i) ⇒ (ii).

(ii) ⇒ (i): Any given θ ∈ Θ and p ∈ P can be expressed
as a convex combination of the vertices of the respective
sets, i.e.,

θ =

2vθ∑
i=1

αiθ
i,

2vθ∑
i=1

αi = 1, αi ≥ 0

p =

vp∑
j=1

βjp
j ,

vp∑
j=1

βj = 1, βj ≥ 0

Then, dynamics in (i) can be written as,

θ+=W−1(X+
p −Wp)N

 vp∑
j=1

βjp
j ⊗

2vθ∑
i=1

αiθ
i


+W−1w (61)

=

vp∑
j=1

βj

2vθ∑
i=1

αi

(
W−1(X+

p −Wp)N(pj ⊗ θi) +W−1w
)︸ ︷︷ ︸

θi,j+∈Θ

(62)

=

vp∑
j=1

βj

2vθ∑
i=1

αiθ
i,j+

︸ ︷︷ ︸
θj+∈Θ

=

vp∑
j=1

βjθ
j+ ∈ Θ, (63)

where (62) follows from the distributive property of the
Kronecker product. From (ii), we have θi,j

+ ∈ Θ (see (36)).
As θj

+ in (63) is a convex combination of θi,j+ and as the
set Θ is convex, it follows that θj+ ∈ Θ. Finally, as θ+ is
obtained as a convex combination of θj+ ∈ Θ and as the set
Θ is convex, it follows that θ+ ∈ Θ, thus proving (ii) ⇒ (i).
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