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a b s t r a c t

In this paper, we present a block-structured architecture for direct identification of continuous-time
Linear Parameter-Varying (LPV) state-space models. The proposed architecture consists of an LPV
model followed by an integral block. This structure is used to approximate the continuous-time LPV
system dynamics. The unknown LPV model matrices are estimated along with the state sequence
by minimizing a properly constructed dual-objective criterion. A coordinate-descent algorithm is
employed to optimize the desired objective, which alternates between computing the unknown
LPV matrices and estimating the state sequence. Thanks to the linear parametric structure induced
by the LPV model, the optimization variables within each coordinate-descent step can be updated
analytically via ordinary least squares. Furthermore, in order to handle large-size datasets, we discuss
how to perform optimization based on short-size subsequences. The effectiveness of the proposed
methodology is demonstrated via an academic example and two case studies. The first case study
consists of identifying an LPV model describing the behaviour of an electronic bandpass filter from
benchmark experimental data. The second case study involves identification of the plasma safety factor
from a tokamak plasma simulator.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Direct identification of continuous-time (CT) dynamical sys-
ems from sampled data has gained significant importance in
he past few years. This is due to the fact that direct CT iden-
ification has multiple advantages over the discrete-time case as
iscussed in Garnier (2015) and Garnier and Young (2014). Essen-
ially, the majority of physical systems are naturally modelled in
ontinuous-time, and thus, the estimated parameters of CT mod-
ls usually have a physical interpretation. Direct CT identification
ethods can also deal with non-uniformly sampled data, while
iscrete-time models implicitly rely on a fixed sampling time.
oreover, CT identification methods are generally more robust

o numerical issues that may arise when using discrete-time
ethods in the case of high-frequency sampled data. Successful
pplications and complete reviews of direct CT identification

✩ The material in this paper was partially presented at the 4th IFAC Workshop
on Linear Parameter Varying Systems (LPVS), July 19–20, 2021, Milan, Italy. This
paper was recommended for publication in revised form by Associate Editor
Juan C. Aguero under the direction of Editor Torsten Söderström.
∗ Corresponding author.

E-mail addresses: manas.mejari@supsi.ch (M. Mejari),
ojan.mavkov@univ-grenoble-alpes.fr (B. Mavkov), marco.forgione@supsi.ch
M. Forgione), dario.piga@supsi.ch (D. Piga).
ttps://doi.org/10.1016/j.automatica.2022.110407
005-1098/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
methods can be found in the book (Garnier & Wang, 2008), in the
contributions (Garnier, 2015; Lataire, Pintelon, Piga, & Tóth, 2017;
Padilla, Garnier, Young, Chen, & Yuz, 2019; Piga, 2020) and the
references therein. However, most of the available algorithms for
CT identification are restricted to the Linear Time-Invariant (LTI)
odelling framework.
Concerning the identification of Linear Parameter-Varying

LPV) models, most of the approaches have been developed for
he discrete-time case, either in input–output form (Bamieh &
iarré, 2002; Laurain, Tóth, Piga, & Darwish, 2020; Mejari, Naik,
iga, & Bemporad, 2020; Mejari, Piga, & Bemporad, 2018; Piga,
ox, Tóth, & Laurain, 2015) or in state-space representation (Cox
Tóth, 2021; Mejari & Petreczky, 2019; Verdult & Verhaegen,

005). Only few contributions have addressed CT identification
f LPV state-space models (Bergamasco & Lovera, 2012; Gáspár,
zabó, & Bokor, 2005; Goos & Pintelon, 2016). In Gáspár et al.
2005), CT identification of grey-box quasi-LPV models with an
bserver-based identification scheme is proposed. In Bergamasco
nd Lovera (2012), a local approach in the framework of subspace
dentification is developed. A frequency domain approach is pro-
osed in Goos and Pintelon (2016) under the assumption of a
eriodic variation of the scheduling signal.
In this paper, we address the problem of direct identification

f continuous-time multi-input multi-output (MIMO) LPV systems
hrough an integral architecture. This architecture consists of
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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n LPV model followed by an integral block, which is used to
pproximate the continuous state dynamics of an LPV system. The
verall methodology is based on the concept recently introduced
y some of the authors in Mavkov, Forgione, and Piga (2020) for
dentification of non-linear systems through neural networks. In
he current contribution, we adapt and specialize that method-
logy for LPV system identification. The main advantage of the
pecialized approach w.r.t. the generic one in Mavkov et al. (2020)
s the higher computational efficiency. Indeed, the most inten-
ive steps of the training procedure presented in Mavkov et al.
2020) are accelerated in this paper – leveraging particular prop-
rties of the LPV model structure – through a coordinate-descent
lgorithm with a closed-form formula for each update step.
Another possible approach to estimate continuous-time LPV

odels is to simulate the model using a numerical ODE solution
cheme, and then minimize the simulation error w.r.t. to the
unknown parameters. However, the resulting simulation error
minimization problem is non-convex and highly nonlinear, and
obtaining its solution can be computationally and numerically
hard. With the integral architecture employed in this paper, we
circumvent the need to run time simulations. Furthermore, we
split the original optimization problem into two sub-problems
which can be solved analytically via ordinary least squares. In
particular, a properly constructed cost function is minimized
through a coordinate-descent algorithm, by successively estimat-
ing the state variables and the mapping functions, one at a time.
At each step of the coordinate-descent algorithm, a least-square
problem is formulated and the solution is computed analytically.
Nonetheless, for large datasets, the computation of state sequence
within the coordinate-descent algorithm may still be excessively
time consuming or even intractable. To this end, we also present
an approach based on short-size subsequences to estimate the
state sequence in an efficient manner in the case of long training
sequences.

The performance of the proposed identification algorithm is
validated on several examples. First, an academic example is used
to demonstrate the efficiency of the algorithm and by assessing
its robustness w.r.t. different initial guesses of the state variables
and different lengths of the training subsequences. The compu-
tational speed improvement resulting from the approach based
on subsequences is demonstrated. In addition, the performance
of the algorithm is tested on two more complex identification
benchmarks. The first benchmark consists of experimental mea-
surements from an electronic bandpass filter (Lataire, Louarroudi,
Pintelon, & Rolain, 2015). An LPV model describing the behaviour
of the filter is identified and validated. The second benchmark
consists of evolution of the plasma safety factor obtained from
the tokamak plasma simulator RAPTOR (Felici & Sauter, 2012).
The proposed algorithm is employed to identify the plasma safety
factor via an LPV representation after an appropriate choice of the
scheduling parameters.

The paper is organized as follows. The identification problem
is formalized in Section 2. The description of the integral architec-
ture and details for the implementation of the proposed estima-
tion algorithm are provided in Section 3. Examples are reported
in Section 4. Preliminary ideas of this work have been already
presented in Mejari, Mavkov, Forgione, and Piga (2021). How-
ever, Mejari et al. (2021) include neither the optimization based
on short-size subsequences nor the two case studies discussed in
Section 4.

2. Problem formulation

We consider a data-generating system S governed by the
ollowing continuous-time MIMO state-space LPV representation:

ẋ(t) = A(p(t))x(t)+ B(p(t))u(t), (1a)
2

x(0) = x0, (1b)
o(t) = C(p(t))x(t)+ D(p(t))u(t), (1c)

here x(t) ∈ Rnx and ẋ(t) ∈ Rnx are the state vector and its time
erivative, respectively; x0 ∈ Rnx is the initial state condition;
(t) ∈ Rnu is the system input; p(t) ∈ Rnp is the scheduling signal
nd yo(t) ∈ Rny is the noise-free system output at time t ∈ R.
he matrix functions A(·),B(·), C(·),D(·) are time-varying affine

functions of the scheduling signal p(t) defined as:

A(p(t)) = A0 +

np∑
i=1

Aipi(t), B(p(t)) = B0 +

np∑
i=1

Bipi(t),

(p(t)) = C0 +

np∑
i=1

Cipi(t), D(p(t)) = D0 +

np∑
i=1

Dipi(t),

here pi(t) denotes the i-th component of the scheduling vector
(t) and {Ai, Bi, Ci,Di}

np
i=0 are real-valued constant matrices of

ppropriate dimensions.
A training dataset D of length N is gathered from the LPV

ystem S defined in (1) at time instants {t0 = 0, t1, . . . , tN−1}.
he dataset consists of input, scheduling and noisy output sam-
les: D = {u(tk), p(tk), y(tk)}N−1k=0 . The measured output y(tk) is
orrupted by a zero-mean noise η, i.e., y(tk) = yo(tk)+ η(tk).
Given the training dataset D, our goal is to identify a

ontinuous-time LPV state-space affine model, such that the
odel output matches closely with the measured system out-
ut y(t). To this end, we define an integral architecture for the
dentification of continuous-time LPV models in the following
ection.

. Continuous-time identification of LPV state-space models

.1. Integral architecture

In order to describe the continuous-time state dynamics in
1a), we define an LPV block Mx(x̂,u, p), which is fed by the
system input u(t), scheduling signal p(t) and (estimated) state
ˆ(t) at time t , and returns the estimated state time-derivative
˙̂(t), i.e.,

x(x̂,u, p) :

˙̂x =

(
Â0 +

np∑
i=1

Âipi(t)

)
x̂(t)+

(
B̂0 +

np∑
i=1

B̂ipi(t)

)
u(t), (2)

where Âi ∈ Rnx×nx and B̂i ∈ Rnx×nu (for i = 0, . . . , np) are the
model matrices to be identified. Similarly, the output equation in
(1c) is represented by another LPV block My(x̂,u, p), which is fed
by the estimated state x̂(t), input u(t) and scheduling signal p(t)
and it returns the model output ŷ(t) at time t , i.e.,

My(x̂,u, p) :

ŷ(t) =

(
Ĉ0 +

np∑
i=1

Ĉipi(t)

)
x̂(t)+

(
D̂0 +

np∑
i=1

D̂ipi(t)

)
u(t), (3)

where the matrices Ĉi ∈ Rny×nx and D̂i ∈ Rny×nu (for i =
0, . . . , np) have to be estimated from data.

To simplify the notations, we introduce the following matrices
stacking the model parameters in their columns:

Θx =

[
Â0 · · · Ânp B̂0 · · · B̂np

]
∈ Rnx×(np+1)(nx+nu)

and

Θ =

[
Ĉ · · · Ĉ D̂ · · · D̂

]
∈ Rny×(np+1)(nx+nu).
y 0 np 0 np
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he resulting continuous-time LPV state-space affine model is
hen given by:
˙̂x(t) =Mx(x̂(t),u(t), p(t);Θx), (4a)

x̂(0) = x̂0, (4b)

ŷ(t) =My(x̂(t),u(t), p(t);Θy). (4c)

We note that, from (2) and (3), the maps Mx(·) and My(·) are
linear functions of the parameters Θx and Θy, respectively given
by:

Mx(x̂(t),u(t), p(t);Θx) = Θx

⎡⎣
[

1
p(t)

]
⊗x̂(t)[

1
p(t)

]
⊗u(t)

⎤⎦ , (5a)

My(x̂(t),u(t), p(t);Θy) = Θy

⎡⎣
[

1
p(t)

]
⊗x̂(t)[

1
p(t)

]
⊗u(t)

⎤⎦ , (5b)

where ⊗ denotes the Kronecker product between the two vec-
tors.

In this paper, we adopt a method introduced in Mavkov et al.
(2020), which exploits the integral form of the Cauchy problem
(4a)–(4b), by defining an integral LPV block MI as:

x̂I (t) =MI (x̂(t),u(t), p(t);Θx) (6)

with

MI (x̂(t),u(t), p(t);Θx) =

x̂(0)+
∫ t

0
Mx(x̂(τ ),u(τ ), p(τ );Θx)dτ .

The block diagram in Fig. 1 is a representation of (6), along
with the output equation (4c) producing ŷ(t).

If the state sequence x̂(t) feeding the LPV model block MI (·) is
actually generated by the model given in (4), then the state x̂I (t)
exactly matches with x̂(t), i.e.,

x̂(t) = x̂I (t) ∀t ∈ [t0 tN−1]. (7)

3.2. Fitting criterion

In the proposed methodology, the LPV model matrices Θx,Θy
and the state signal x̂(t), t ∈ [t0, tN−1], are free optimization
parameters. They are jointly optimized according to a dual objec-
tive constructed with the following rationale. First, the estimated
model output ŷ should match the output measurements in the
training dataset D. This objective is achieved by introducing a
fitting term in the cost function which penalizes the distance be-
tween the model output ŷ(tk) and the measured output y(tk), k =
0, 1, . . . ,N − 1. Second, the state signal x̂ should be compatible
with the model dynamics (4). This can be achieved through an ad-
ditional regularization term which penalizes the distance between
x̂I (t) and x̂(t), where x̂I is defined as in (6).

The following minimization problem is thus formulated:

min
x̂(·),Θx,Θy

J(x̂(·),Θx,Θy), (8a)

where

J =
N−1∑
k=0

∥

ey  
ŷ(tk)− y(tk) ∥2  

Jy

+ α

∫ tN−1

t0

∥

ex  
x̂I (τ )− x̂(τ ) ∥2 dτ  

Jx

,
(8b)

ith

ŷ(t ) =M (x̂(t ),u(t ), p(t ); Θ ), (8c)
k y k k k y

3

Fig. 1. Integral architecture for continuous-time LPV model identification.

Fig. 2. Block diagram representing computation of the cost function for the
proposed integral LPV architecture.

x̂I (t) = x̂(0)+
∫ t

0
Mx(x̂(τ ),u(τ ), p(τ ); Θx) dτ . (8d)

he hyper-parameter α > 0 acts as a tuning knob balancing the
elative importance of the fitting cost Jy and the regularization
ost Jx, and it can be chosen through cross-validation. The op-
rations required to compute the cost J in (8b) are depicted in
ig. 2.

.3. Optimization algorithm

It is important to note that the optimization problem (8) is
nfinite-dimensional and thus computationally intractable. Indeed,
he continuous-time state signal x̂(t) ∈ Rnx , t ∈ [t0 tN−1] is
ne of the problem’s decision variables. Following the rationale
n Mavkov et al. (2020), we employ numerical techniques to
ransform (8) into a finite-dimensional problem. In particular,
he state signal x̂(t) is approximated using a finite-dimensional
arametrization. For simplicity of exposition, we represent the
tate signal with a piecewise constant parametrization, where x̂(t)
s constant in the intervals [tk tk+1], k = 0, 1, . . . ,N − 1. In
eneral, more complex parametrizations for x̂ such as piecewise
inear or polynomial could be used. Furthermore, we approximate
he integrals in (8b) and (8d) by applying a numerical integration
cheme. For simplicity, in this work we apply the classical rect-
ngular approximation rule for the numerical integration of (8b)
nd (8d). Other quadrature rules such as trapezoidal or Gaussian
uadrature could be alternatively considered.
Overall, the piecewise constant parametrization of the signals

ˆ(t), u(t), p(t) with the rectangular quadrature of the integrals
leads to the following approximation:∫ tN−1

∥x̂I (τ )− x̂(τ )∥2dτ ≈
N−1∑
∥x̂I (tk)− x̂(tk)∥2∆tk,
t0 k=1
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here ∆tk = tk − tk−1, and (8d) can be approximated with the
ollowing Riemann sum:

ˆ I (tk) ≈ x̂(0)+
k−1∑
j=0

∆tj+1Mx(x̂(tj),u(tj), p(tj); Θx).

Note that, for computational convenience, the sum in the equa-
tion above can be constructed recursively as:

x̂I (tk+1) = x̂I (tk)+

∆xk  
∆tk+1Mx(x̂(tk),u(tk), p(tk);Θx) .

From the linear dependence of the map Mx(·) on Θx in (5a), the
equation above can be rewritten as:

x̂I (tk+1) = x̂I (tk)+∆tk+1Θx

[ [
1

p(tk)
]
⊗x̂(tk)[

1
p(tk)

]
⊗u(tk)

]
. (9)

Similarly, as the map My(·) is a linear function of Θy, substituting
(5b) in (8c) yields:

ŷ(tk) = Θy

[ [
1

p(tk)
]
⊗x̂(tk)[

1
p(tk)

]
⊗u(tk)

]
.

With the above considerations, the cost function J in (8a) is min-
imized w.r.t. the parameters {x̂,Θx,Θy} by using the coordinate-
escent approach described in Algorithm 1. With a slight abuse of
otation, the optimization variable x̂ in Algorithm 1 denotes the
inite-dimensional representation of the state signal x̂, i.e., x̂ =
{x̂(t0), . . . , x̂(tN−1)}.

Given an initial guess x̂(0) of the state sequence, at each iter-
ation n ≥ 1, Algorithm 1 alternates between two steps: Step 1.1
and Step 1.2. In particular, at Step 1.1, model parameters Θx,Θy
re computed by solving (8a) for a fixed state sequence x̂(n−1)
btained at the iteration (n − 1). Subsequently, at Step 1.2, the
tate sequence x̂(n) is estimated by minimizing the cost (8a) for
ixed model parameters Θ (n)

x and Θ
(n)
y obtained from Step 1.1

t the n-th iteration. The procedure continues until a maximum
umber of iterations is reached, or a certain convergence criterion
s met (Step 2.).

We stress that the solutions at Step 1.1 and 1.2 of Algorithm
may be obtained analytically through linear least squares. For
xample, at Step 1.1, the updated model parameters Θx and Θy
for fixed x̂) are given by:
′

x = (Φ′xΦx)−1Φ′xX, Θ ′y = (Φ′yΦy)−1Φ′yY , (10)

ith X = [ (x̂(t1)−x̂(t0)) ... (x̂(tN−1)−x̂(t0)) ]′ and Y = [ (ŷ(t0))′ ... (ŷ(tN ))′ ]′.
The matricesΦx andΦy are constructed such that their k-th block
row is given by:

Φx[k, :] =
k−1∑
j=0

∆tj+1

[ [ 1
p(tj)

]
⊗x̂(tj)[ 1

p(tj)
]
⊗u(tj)

]
,

Φy[k, :] =
k−1∑
j=0

[ [ 1
p(tj)

]
⊗x̂(tj)[ 1

p(tj)
]
⊗u(tj)

]
,

where we introduce the notation Φx[k, :] and Φy[k, :] to refer to
the k-th block row of respective matrices. Similarly, at Step 1.2,
given the model parameters Θx and Θy, the state sequence x̂ can
be computed via ordinary least-squares.

3.4. Subsequence optimization algorithm

Note that the size of the optimization variables x̂ = {x̂(t0), . . . ,
x̂(tN−1)} at Step 1.2 of Algorithm 1 increases with the size of
training data samples. For applications involving large training
4

Algorithm 1 Coordinate-descent optimization for the estimation
of states x̂ and model parameter matrices Θx,Θy

Input: Training dataset D = {u(tk), y(tk), p(tk)}N−1k=0 ; initial guess
x̂(0); tuning parameter α; tolerance ϵ, maximum number of
iterations nmax.

1. Iterate for n = 1, . . .

1.1. Θ (n)
x ,Θ

(n)
y ← argmin

Θx,Θy
J(x̂(n−1),Θx,Θy)

1.2. x̂(n) ← argmin
x̂

J(x̂,Θ (n)
x ,Θ

(n)
y )

2. Until ∥x̂(n) − x̂(n−1)∥ ≤ ϵ or n = nmax

Output: Estimates {x̂(tk)}N−1k=0 and Θx,Θy.

datasets, solving this optimization problem may become compu-
tationally intractable or Algorithm 1 can be very sensitive to the
choice of the initial guess x̂(0) because of the large dimension of
the optimization domain. In order to tackle this issue, we describe
an approach based on shorter subsequences to compute the state
sequence x̂ in an efficient manner.

Consider a subsequence of length T (typically, T << N). For a
generic time instance ti and for fixed model parameters Θx, Θy,
we minimize the cost

JT =
i+T−1∑
k=i

∥ŷ(tk)− y(tk)∥2 + α
∫ ti+T−1

ti

∥x̂I (τ )− x̂(τ )∥2 dτ . (11)

ver the time interval [ti ti+T−1]. By approximating the integral in
11) with the rectangular quadrature, we may compute the sub-
equence variables x̂ti:ti+T−1 = {x̂(ti), . . . , x̂(ti+T−1)}, by optimizing
he following cost

T (x̂prev(ti−1), x̂ti:ti+T−1;Θx,Θy)

=

i+T−1∑
k=i

∥ŷ(tk)− y(tk)∥2 + α
i+T−1∑
k=i

∥x̂I (tk)− x̂(tk)∥2∆tk
(12)

ith

ŷ(tk) =My(x̂(tk),u(tk), p(tk); Θy),
ˆ I (tk) = x̂prev(ti−1)

+

k∑
j=i−1

Mx(x̂(tj),u(tj), p(tk);Θx)∆tj+1.

ote that x̂prev(ti−1) denotes the state optimized over the previous
ubsequence. Thus, x̂prev(ti−1) acts as the initial state for the
urrent subsequence in order to enforce consistency of the state
ariables over the training dataset. The loss in (12) is minimized
n a rolling-horizon manner as described in step 1.2 of Algorithm
. In particular, at the n-th iteration, for fixed Θ

(n)
x ,Θ

(n)
y ob-

ained from Step 1.1, the subsequence x̂ti:ti+T−1 is computed by
inimizing (12) starting from ti = 0. Next, the time index is
hifted T steps forward to compute the succeeding subsequence
ith x̂prev set to the last state of the previous subsequence. The
rocess is repeated over all N training data samples. Algorithm 2
s run until a maximum number of iterations nmax is reached or a
ertain stopping criterion is met (Step 2). Note that the number
f optimization variables at x̂ at Step 1.2 of Algorithm 2 grows
inearly with T .

. Case studies

In this section, we demonstrate the effectiveness of the pro-
osed method via an academic example and two more complex
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Algorithm 2 Coordinate-descent optimization with short-size
subsequences for estimation of state x̂ and model parameter
atrices Θx,Θy.

Input: Training dataset D = {u(tk), y(tk), p(tk)}N−1k=0 ; initial guess
x̂(0); subsequence of length T ; tuning parameter α; tolerance ϵ,
maximum number of iterations nmax.

1. Iterate for n = 1, . . .

1.1. Optimize Θx,Θy

Θ
(n)
x ,Θ

(n)
y ← argmin

Θx,Θy
J(x̂(n−1),Θx,Θy)

1.2. Optimize x̂

1.2.1. set i← 0, x̂prev(t0)← x̂0
1.2.2. solve short-sequence optimization (12)

x̂ti :ti+T−1←argmin
x̂ti :ti+T−1

JT (x̂prev(ti−1), x̂ti :ti+T−1 ,Θ
(n)
x ,Θ

(n)
y )

1.2.3. i← i+ T
1.2.4. x̂prev(ti−1)← x̂ti−1
1.2.5. Go to step 1.2.2 until i < N − T − 1.
1.2.6. set x̂(n) ← x̂t0:tN−1

2. Until ∥x̂(n) − x̂(n−1)∥ ≤ ϵ or n = nmax

Output: Estimates {x̂(tk)}N−1k=0 and Θx,Θy.

case studies. The first case study concerns the identification of an
electronic bandpass filter from an experimental dataset and the
second one involves identification of plasma safety factor from
a nonlinear tokamak plasma simulator. The sub-problems within
the coordinate-descent steps are solved analytically via ordinary
least squares. All computations are carried out on an i7 1.9-GHz
Intel core processor with 32 GB of RAM running MATLAB R2019a.

4.1. Academic example

An MIMO LPV state-space model with input dimension nu = 2,
scheduling signal dimension np = 2, state dimension nx = 2,
and output dimension ny = 2 is considered as a data-generating
system, with:[
A0 A1 A2

]
=

[
0 0.5 0.4 0 0.2 0
−0.5 0 0 0.3 0 0

]
,

0 =

[
1 0
0 1

]
, C0 =

[
1 1
0 1

]
,D0 =

[
2 0
0 2

]
.

The data are generated by simulating1 the continuous-time LPV
ystem S in (1) and sampling the outputs, inputs and scheduling
ignals with a sampling time of 0.01 s. The input trajectories vary
n the domain u(t) ∈ [ −2, 2 ] × [ −2, 2 ] and the scheduling signal
aries within the box p(t) ∈ [ −1, 1 ] × [ −1, 1 ]. The output mea-
urements are corrupted by a zero-mean white Gaussian noise η
ith distribution η(t) ∼ N (0,Σ) whereΣ is diagonal. In order to
nalyse the statistical properties of the proposed identification al-
orithm, a Monte-Carlo study with 50 runs is performed. At each
onte-Carlo run, a different realization of input u(t), scheduling
ignal p(t) and noise η(t) is considered. The noise covariance

1 The trajectories of the system S in (1) are generated using MATLAB’s ode45
function which employs the 4-th order Runge–Kutta method with an adaptive
step size.
5

Fig. 3. Monte-Carlo analysis: boxplots of achieved BFR indices for output
channels y1 (light) and y2 (dark) for different subsequence lengths.

Fig. 4. Computation time per iteration vs. subsequence length.

matrixΣ is chosen such that for each Monte-Carlo run, the signal-
o-noise ratio (SNR) is SNR[i]y = 10 log

∑N−1
k=0 (yi(tk)−ηi(tk))

2∑N−1
k=0 (ηi(tk))

2 = 15 dB

for both output channels. Here, the subscript i denotes the i-th
output channel and thus SNR[i]y corresponds to the SNR of the i-
th channel. For each Monte-Carlo run, a training dataset of N =
2000 samples and a noise-free validation dataset of Nval = 500
samples is generated. The quality of the estimated LPV model
is assessed via the Best Fit Rate (BFR) index defined as BFR[i]y =

max

{
1−

√∑Nval−1
k=0 (yi(tk)−ŷi(tk))

2∑Nval−1
k=0 (yi(tk)−ȳi)2

, 0

}
× 100%,

with ŷi being the simulated model output and ȳi is the sample
mean of the output over the validation set.

For identification, we consider an LPV state-space affine model
structure (4) with state dimension set to the true system di-
mension nx = 2. The LPV model matrices Θx, Θy and the
state sequence x̂ are estimated by running the coordinate-descent
Algorithm 2 for nmax = 30 iterations, with initial guess x̂(0) of the
state sequence chosen randomly from a uniform distribution in
the interval [0, 0.01). The regularization parameter α is set to 1.
In order to assess the effect of the chosen subsequence length
T , we carry out simulation studies with 5 different subsequences
lengths T = {10, 50, 400, 1200, 2000}.

The boxplots of the achieved BFR indices over different Monte-
Carlo runs are plotted in Fig. 3. The estimated models achieve a
good performance in terms of BFR index for all T , with only a
few outliers. The average computation time per iteration of the
coordinate-descent algorithm for different lengths T is plotted in
Fig. 4. The computation time grows with increasing values of the
sequence length T . From these figures, we observe that in general
the performance improves with increase in T . Overall, faster ex-
ecution times can be achieved by setting a short sequence at the
cost of a slight decrease in the accuracy of the estimated models.

Furthermore, the estimated model outputs over the validation
dataset are plotted in Fig. 5 for the case of T = 400. Only a
subset of the simulated output has been plotted for the sake of
better visualization. To assess the convergence properties of the
coordinate-descent algorithm, the mean and the standard devia-
tion of the cost J (over the Monte-Carlo runs) is plotted in Fig. 6

against the iterations. It can be observed that convergence of the
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Table 1
Academic example: BFR achieved on validation data.

CT LPV-SS DT NL-ARX DT LPV-ARX

BFR[1]y 90% 88% 88%

BFR[2]y 91% 93% 90%

Fig. 5. Validation: True output (red) vs. estimated outputs (dashed black) for
utput channel 1 (Top panel) and output channel 2 (Bottom panel) with T = 400.
For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of this article.)

Fig. 6. Training: Mean (dashed black) ± std deviation (shaded grey) of the cost
unction vs. number of iterations.

oordinate-descent algorithm is achieved in about 30 iterations,
nd the reconstructed outputs match closely with the true ones.
Finally, the proposed algorithm is compared with two discrete-

ime approaches, which identify a non-linear auto-regressive with
xogenous input (NL-ARX) model and a linear parameter-varying
RX (LPV-ARX) model in input–output form. The NL-ARX and
PV-ARX models are identified by minimizing the prediction error
.r.t. model parameters using the MATLAB System Identification
oolbox (Ljung, 2019). Note that, for the LPV-ARX model, the
olution is obtained via ordinary least squares. For both cases,
e consider a second-order model structure, i.e., the output

at each time instance depends on the past two outputs and
inputs samples. For NL-ARX, we choose sigmoid non-linearities.
In LPV-ARX model, the dependency of the model coefficients on
scheduling parameters is considered to be affine. The obtained
BFRs are reported in Table 1.

4.2. Identification of an electronic bandpass filter

We consider the identification of an LPV model describing the
behaviour of a second-order electronic bandpass filter, which is
6

Fig. 7. Electric schematic of the electronic bandpass filter.

Table 2
Electronic bandpass filter: BFR achieved on validation data.
CT LPV-SS DT NL-ARX DT LPV-ARX

93% 63% 87%

implemented using an n-type JFET transistor in parallel with a
variable resistor, as shown in Fig. 7. The resonant frequency of
the bandpass filter varies according to the gate–source voltage of
the transistor, which is chosen as a scheduling signal p(t) for the
LPV model to be identified.

From the available repository (Lataire et al., 2015), we consider
the dataset termed MS_Harm_h20_N15640_RMS70_P2P700. The
dataset consists of 6 different realizations of the input and 2
different realizations of the scheduling signal. Each realization
has N = 46 920 samples of input, output and scheduling signal
measurements. The reader is referred to Lataire et al. (2015) for
a detailed description of the applied excitation input signal u(t)
and scheduling variable p(t).

For identification, we consider the affine LPV state-space rep-
resentation (4) with model order set to nx = 3. One of the
realization of the signals consisting of N = 46 920 samples is
used for training. Note that the size of the state-sequence x̂ to
be optimized is very large, namely 46 920 × 3. Thus, the opti-
mization problem at Step 1.2 of Algorithm 1 is computationally
intractable on the considered platform. This requires to employ
the short-size subsequence algorithm discussed in Section 3.4.

The LPV model is identified by running Algorithm 2 for nmax =

50 iterations with subsequence length T = 2000. The hyper-
parameter α is set to α = 1. As initial guess, the state se-
quence x̂(0) is set to the states of an LTI state-space model, iden-
tified via the N4SID subspace method (van Overschee & de Moor,
1996). The average computation time required for one iteration
of the coordinate-descent algorithm to process the entire batch
of training data is 118 s.

The performance of the identified model is evaluated on an
independent validation dataset (not used for training) of size
Nval = 15 640 samples. For a better visualization, part of the
simulated output of the identified continuous-time LPV model
is plotted in Fig. 8 along with the real output. For comparison,
the simulated output of a continuous-time LTI model identified
with N4SID algorithm is also plotted. The achieved BFR index for
the LPV model identified with the proposed approach is 93% vs.
62% achieved by the LTI model. We also compare the proposed
approach with the discrete-time prediction error method iden-
tifying a third-order NL-ARX model (with sigmoid non linearity,
cf. Ljung (2019)) and an LPV-ARX model (with affine dependence)
in input–output form. The results are reported in Table 2, which
shows that the CT LPV-SS model identified with the proposed
algorithm is able to reconstruct the output more accurately than
the NL-ARX and LPV-ARX models.
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.3. Identification of the plasma safety factor from the RAPTOR code

As a last case study, we consider identification of the plasma
afety factor from the RApid Plasma Transport simulatOR (RAPTOR)
imulator described in Felici and Sauter (2012).

.3.1. System description
The RAPTOR is a predictive transport code simulating the 1D

lasma coupled poloidal flux diffusion and the electron temper-
ture transport.
The safety factor q, and its reciprocal (ι), are among the key

arameters to analyse the plasma stability and performance.
he evolution of these parameters is proportional to the spatial
erivative of the poloidal magnetic flux ψ(ρ, t), as: ι = 1

q =
∂Ψ
∂φ
=

1
2πB0ρ

∂ψ

∂ρ
, where ρ =

√
φ/πB0. Normalized ρn is defined

s ρ/ρe, where ρe is the toroidal flux enclosed by the last closed
lux surface. Here φ(ρ) is the toroidal flux and B0 is the toroidal
agnetic field at the centre of the vacuum vessel. The evolution
f the poloidal flux in the RAPTOR code is modelled using the
ollowing equation (Felici & Sauter, 2012):

∂ψ

∂t
= η∥

R0J2

µ0ρ

∂

∂ρ

(
G2

J
∂ψ

∂ρ

)
− η∥

V ′

2πρ
(jbs + jaux), (14)

here µ0 and R0 are constant parameters. The geometric profile
uantities J(ρ), V ′(ρ),G2(ρ) are considered to be constant un-
er the assumption that the toroidal flux distribution does not
hange. The parameter η∥(ρ, t) is the parallel electrical resistivity
f the plasma. This variable is time varying and related to the
lectron temperature Te according to η∥ ∼ T−3/2e . The auxiliary
ource’s current density jaux is generated by external sets of cur-
ent drive actuators. In this simulation configuration, two clusters
f electron cyclotron current drive (ECCD) gyrotrons are used.
he total jaux is calculated as sum of each individual cluster jeccd.
he contribution of each cluster is calculated using the scaling
aw (Felici & Sauter, 2012):

eccd(ρ, t) =
Te
ne

jdis,i(ρ)Pec,i(t), (15)

hich is the product of the weighted Gaussian distributions jdis(ρ)
given in Felici et al. (2011)) with the current-drive efficiency
Te
ne

)
and the input power Pec(t). The bootstrap current density jbs

omes from a self-generated plasma current, its magnitude in this
etup is much lower than the one of jaux. The boundary conditions
f (14) are:

∂ψ(0, t)
∂ρ

= 0,
G2(ρe)
µ0

∂ψ(ρe, t)
∂ρ

= Ip(t), (16)

here Ip(t) is the total plasma current.

4.3.2. LPV modelling
A lumped version of the dynamics in (14) is modelled using

n affine LPV representation. The safety factor inverse ι in three
discretized points is selected as the output of the system y(t) =
ι(ρn = 0, t), ι(ρn = 0.1, t), ι(ρn = 0.2, t)}. The control inputs are
he power requests to the ECCD-clusters u(t) = {Pec1(t), Pec2(t)}.
he first clusters are one with counter-current drive (Pec1(t)), and
he second with co-current drive (Pec2(t)). The total current Ip(t) is
ept to the constant value 120 kA after the initial ramp-up phase
f 80 ms. The simulations are executed over 10 s with sampling
ime of 1 ms, and the samples from the first 0.15 s are excluded
rom the training data.

The choice of the scheduling parameters is inspired by the
hysical Eq. (14). The first scheduling parameter p (t) = p (t)
1 n

7

Fig. 8. Electronic bandpass filter: real output (red) vs. simulated outputs with
LPV model (dashed black) and LTI model (dashed blue). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 9. Plot of pn(t) and Te(ρ = 0, t).

is chosen based on the time-varying profile η∥(ρ, t), which is
escribed as proposed in Mavkov et al. (2018):

∥(ρ, t) = pn(t)η∥,min + (1− pn(t))η∥,max, (17)

here η∥,min and η∥,max are fixed bounding profiles (minimum
and maximum value, respectively) of η∥. The second scheduling
term p2(t) comes from the multiplication of the scaling efficiency
factor ( Tene ) in the model of jeccd from (15), and η∥ in (14). Thus, the
second scheduling parameter is chosen as p2(t) = pn(t) · Te(ρ =
0, t). The temperature Te at the core of the plasma (ρ = 0) is
selected to define the scheduling parameter because of the peak
location of the deposition of jdis,i(ρ) of both ECCD clusters. The
time evolution of the signals pn(t) and Te(ρ = 0, t) is given in
Fig. 9.

With the chosen scheduling parameters, an LPV affine model
(4) is considered with model order set to nx = 3. The model is
identified by running Algorithm 2 for nmax = 80 iterations with
subsequence length T = 500. The state variables are initialized
as x̂(0) = y. The estimated model output in the validation dataset
is shown in Fig. 10. The results are compared with a CT LTI
state-space model identified using the N4SID algorithm. The BFR
indices for the CT LTI model for the three output channels are
{85, 83, 78}% respectively. The proposed algorithm is also com-
pared with a third-order DT NL-ARX and to an LPV-ARX model
obtained via prediction error minimization. The achieved BFR
indexes for the CT LPV model identified with the proposed ap-
proach and DT NL-ARX, LPV-ARX models are reported in Table 3.
The obtained results show that the LPV-SS model estimated using
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Fig. 10. The outputs of the RAPTOR simulator: True output (red) vs. simulated
outputs with LPV model (dashed black) and LTI model (dashed blue). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 3
BFR achieved on validation data of the RAPTOR simulator.

Output 1 Output 2 Output 3

CT LPV-SS 96% 96% 94%
DT NL-ARX 84% 81% 77%
DT LPV-ARX 87% 85% 71%

the proposed algorithm closely matches with the actual evolution
of the safety factor from the RAPTOR simulator, and has a better
accuracy compared to all the other methods we have tested.

5. Conclusion

This paper has presented an integral architecture for direct
dentification of continuous-time LPV models in state-space form.
coordinate-descent algorithm tailored for the proposed integral
rchitecture is presented in combination with a subsequence
ptimization heuristic for efficient computation of state sequence
nd model parameters. The main advantage of the proposed
lgorithm is the high computational efficiency, as the solution
o the sub-problems at each step of the coordinate-descent al-
orithm can be obtained in closed form. Current research ac-
ivities are focused on the introduction of regularization criteria
n order to enforce smoothness of the estimated hidden state,
hus improving the overall accuracy of the proposed estimation
lgorithm.
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