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Abstract

Identification of dynamical systems from low-resolution quantized data
presents several challenges because of the limited amount of information
available in the data and since proper algorithms have to be designed to
handle the error due to quantization. In this paper, we consider identifi-
cation of Infinite Impulse Response (IIR) models from quantized outputs.
Algorithms both for maximum-likelihood estimation and Bayesian infer-
ence are developed. Finally, a particle-filter approach is presented for
recursive reconstruction of the latent non-quantized outputs from past
quantized observations.

1 Introduction

Although significant improvements in hardware speed, precision, and computa-
tional power have been seen in the last decades, only low-resolution quantized
data are often available in some engineering applications. Indeed, bandwidth
limitations and transmission costs represent current bottlenecks of modern com-
puter and sensor networks, where a large number of users share the network’s
resources. This requires to transmit low-resolution quantized data within the
network in order to reduce the transmission load. Furthermore, cheap and
low-resolution quantized sensors (e.g., binary-valued sensors) are often used in
real-time applications. Examples includes contact switches in robotic hands to
detect the presence of an object in the sensing region, linear and angular en-
coders, binary chemical sensors to detect the presence of chemical compounds,
and general event detectors, just to cite a few.
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1.1 Contributions on system identification from quantized
data

Because of the limited information contained in low-resolution data, identifi-
cation of dynamical systems from quantized data has several challenges and
attracted the attention of many researchers [27]. Indeed, even in the case of
simple Linear Time-Invariant (LTI) systems, conventional algorithms like least-
squares may lead to poor estimate of the system parameters because of the bias
introduced by the quantization noise [14,16]. In order to improve the parameter
estimate, an approach based on instrumental variables and multi-step predic-
tion is presented in [26], while in [1] quantization noise shaping techniques are
developed to properly choose the quantization mechanism.

System identification from binary sensors is addressed in [17] for Finite Im-
pulse Response (FIR) models under the (strong) assumption that that noise
distribution is exactly known. Algorithms for identification of FIR model from
binary measurements inputs and outputs have been recently presented in [18,24].
Both of these contributions are based on the assumption that the (hidden) input
is normally distributed. This assumption is relaxed in [28], where parametrized
noise distributions are considered. A two-step identification procedure is pro-
posed, where first the hidden non-quantized output is reconstructed and then
the model parameters are estimated using periodic input signals. A weighted
least-squares approach providing consistent estimate for FIR model parameters
is proposed in [10]. In [15], identification of FIR models under structural un-
certainties (including deterministic unmodelled dynamics, nonlinear model mis-
match, and sensor observation bias) is discussed, and upper and lower bounds
on identification errors are derived. Extension to the identification of Wiener
systems (linear FIR block followed by a parametric nonlinear static function)
from binary-valued observations is discussed in [29]. Two algorithms for recur-
sive identification of Infinite Impulse Response IIR models via binary sensors
with adjustable threshold is addressed in [11]. The first algorithm proposed
in [11] is based on an FIR approximation of the IIR model and requires a ma-
trix inversion to reconstruct the parameters of the original IIR, while the second
approach directly estimates the parameters of the original IIR model along with
the (latent) output variables.

Several contributions have been also proposed in the more general case of
learning from multi-level quantized data. Results on identification of both FIR
and (IIR) models are given in [5–8,23] in the set-membership setting, where the
unknown-but-bounded description of the quantization error is adopted. Contri-
butions are also available in the stochastic framework. Maximum-likelihood es-
timation of multi-input multi-output FIR model parameters is addressed in [13].
This work is extended by the same authors in [12] for sparse identification of
FIR models by formulating the estimation problem in a Maximum-A-Posteriori
(MAP) framework, with a Laplace prior on the model parameters used to pro-
mote sparsity. A generalised expectation-maximisation algorithm is employed to
solve the MAP problem, and Gibbs sampling is used to approximate expected
values of truncated multivariate Gaussian distributions required for the com-
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putation of conditional expectations. Generalized quantization schemes with
noise-shaping filters are also used, and it is shown that these filters, if prop-
erly designed, can improve the accuracy of the parameter estimates. Other
approaches are available in the literature for identification of Wiener [19] and
Hammerstein systems [30].

1.2 Paper contributions and related literature

This paper is focused on identification of Infinite Impulse Response (IIR) models
from multi-level quantized data. A Bayesian framework is adopted and the
following problems are addressed:

� maximum-likelihood and maximum-a-posteriori estimation of the IIR model
parameters, initial conditions and noise variance. Analytical expressions
of the gradients w.r.t. the unknown variables are derived and used to
perform optimization through a gradient-ascent algorithm;

� approximation of the posterior distribution of the unknown parameters
through Laplace’s method and Markov Chain Monte Carlo (MCMC);

� probabilistic inference of an output sequence given a new (not used for
training) input sequence;

� filtering problem, which aims at iteratively reconstructing the latent non-
quantized output from past observations of quantized outputs and based
on a Bayesian estimate of the model. To this aim, a particle filter algorithm
is constructed.

To position our work in the literature on system identification from quantized
data, it is worth mentioning the contributions [4, 9, 25] which address identifi-
cation of FIR systems from a Bayesian perspective. Specifically, the unknown
impulse response is modelled as a realization of a Gaussian Process, with covari-
ance matrix described by stable spline kernels [22]. Gibbs sampler is used in [4]
to approximate the posterior distribution of the impulse response. However, this
method requires sampling the unknown non-quantized output observations, and
thus its computational burden increases fast with the size of the dataset. On
the other hand, in our approach we only sample from the space of the IIR
model parameters, initial conditions and noise variance. Thus, the dimension
of the sampling space does not increase with the size of the dataset. In [9], an
expectation-maximization algorithm is proposed to compute the MAP estimate
of the FIR model parameters. However, only single-point estimates are dis-
cussed, while our approach addresses complete approximation of the posterior
distribution of the model parameters and of new output sequences. In [25] a
variational approximation of the likelihood and of the posterior distribution of
the impulse response is constructed and then used to find (an approximation
of) the maximum-likelihood and maximum-a posteriori estimator. Like in [9],
only a single-point estimate is computed.
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Maximum-likelihood estimation of ARMA models is considered in [21]. An
online algorithm based on the quasi-Newton method is proposed and shown to
asymptotically achieves the minimum parameter estimation error covariance.
As in the previously cited papers, a frequentist approach is followed and a
single-point estimate of the model parameters is provided.

1.3 Paper outline

The manuscript is organized as follows. The system identification problem from
quantized data is formalized in Section 2. Maximum-likelihood estimation is
discussed in Section 3. The Bayesian framework is introduced in Section 4,
where algorithms for: MAP estimate; approximation of the posterior distribu-
tions of the unknown parameters; and system’s output inference are presented.
The filtering problem is discussed in Section 5. The effectiveness of the approach
is shown in Section 6 through numerical examples. Conclusions and directions
for future research are discussed in Section 7.

Derivations of the second-order derivates used to construct the Hessian of
the log-posterior distribution are reported in the Appendix.

1.4 Notation

General definitions The sets of real and integer numbers are denoted by R
and Z, respectively. All vectors are assumed to be column vectors, unless stated
differently. A superscript > denotes the transpose of a vector or a matrix. Thus,
if x is a column vector, x> is a row vector. The determinant of a square matrix
A is denoted by |A|. The natural exponential function is denoted by exp(·) and
the Dirac’s delta function centered in the point a is denoted by δa(·).

Univariate Normal distribution N (µ, σ2) denotes the univariate Normal
distribution with mean µ ∈ R and positive variance σ2 ∈ R, σ2 > 0. The
reciprocal τ = 1

σ2 of the variance is referred to as precision. For a scalar real-
valued variable x ∈ R, the probability density function (pdf) of the univariate
Normal distribution is defined by:

N (x;µ, σ2) =
1

(2πσ2)
1
2

exp

(
− 1

2σ2
(x− µ)2

)
. (1)

Multivariate Normal distribution N (µ,Σ) denotes a D-dimensional mul-
tivariate Normal distribution with mean µ ∈ RD and positive definite covariance
matrix Σ ∈ RD×D. For a D-dimensional real-valued vector x ∈ RD, the pdf of
the multivariate Normal distribution is defined by:

N (x;µ,Σ) =
1

(2π)
D
2 |Σ| 12

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
. (2)
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2 Problem setting

2.1 System description

Let us consider an LTI system S described by the difference equation

x(k) =

na∑
i=1

aix(k − i) +

nb∑
j=1

bju(k − j), (3)

where x(k) and u(k) are the system’s output and input, respectively, at time
k ∈ Z; na and nb are fixed positive integers defining the dynamical order of
the system; and ai ∈ R (with i = 1, . . . , na) and bj ∈ R (with j = 1, . . . , nb)
are unknown parameters to be estimated from data. To compact the notation,
we collect the parameters ai and bi in the vector θ ∈ Rnθ , with nθ = na + nb

and θ = [a1 . . . ana b1 . . . bnb
]>. The initial conditions of the output x0 =

[x(−na + 1) . . . x(0)]> ∈ Rna are assumed to be unknown.
The output x(k) is corrupted by an additive noise e(k), i.e., y(k) = x(k) +

e(k), where y(k) denotes the noisy output. The noise e(k) is supposed to be
generated by a white random process, and e(k) is normally distributed with
zero mean and unknown variance σ2

e , i.e., e(k) ∼ N (0, σ2
e). Furthermore, e(k)

is supposed to be statistically independent of the latent output x(k) and of the
system input u(k).

We assume that the (noisy) output y(k) is not directly observed, but only a
quantized measurement v(k) of y(k) is available, namely:

v(k) = Q(y(k)), (4)

where Q(·) is the quantizing operator, defined by

Q(y) = v if y ∈ (qv, qv+1], (5)

where v ∈ {1, . . . ,K} (with K being the number of quantization intervals), and
(qi, qi+1] defines the range of the i-th quantization interval, which is assumed
to be known. Note that q1 and qK+1 can be equal to −∞ and +∞, respectively.
A particular case is the binary quantizer, with v ∈ {1, 2}, q1 = −∞, q3 = ∞,
and q2 is the quantizer threshold, i.e.,

Q(y) =

{
1 if y < q2

2 if y ≥ q2.
(6)

2.2 Addressed problems

Let V and U be the available datasets containing quantized output obser-
vations and inputs up to time N , respectively, namely V = {v(k)}Nk=1 and
U = {u(k)}Nk=−nb+1. The following learning problems will be addressed in the
paper:

� Maximum likelihood estimation of the unknown model parameters θ, ini-
tial conditions x0, and noise standard deviation σe;
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� Bayesian inference, with: (i) maximum-a-posteriori estimate of the un-
known variables θ, x0 and σe; (ii) approximation of the posterior distri-
bution p(θ, x0, σe|V,U); (iii) inference of a new (not used for training)
output sequence;

� Filtering, for recursive reconstruction of the latent output x(k) given quan-
tized output observations v(k) up to time k.

3 Maximum Likelihood estimation

3.1 Likelihood definition

Because of the conditional independence of the observed quantized outputs v(k)
given the latent output x(k), the likelihood function of the system parameters
θ, the initial conditions x0 and the noise standard deviation σe is given by

L(θ, x0, σe) = p(V|U ; θ, x0, σe) (7a)

=

N∏
k=1

p(v(k)|x(k), σe) =

N∏
k=1

p (Q (x(k) + e(k)) = v(k)) (7b)

=

N∏
k=1

p
(
qv(k) ≤ x(k) + e(k) ≤ qv(k)+1

)
= (7c)

=

N∏
k=1

(
Φ

(
qv(k)+1 − x(k)

σe

)
− Φ

(
qv(k) − x(k)

σe

))
, (7d)

where Φ is the cumulative density function of the Normal distribution, i.e.,
Φ(x) =

∫ x
w=−∞N (w; 0, 1)dw. Note that (7b) holds since the noise free output

x(k) is a determinist function of the model parameters θ, the initial conditions
x0 and the input sequence U .

3.2 Likelihood maximization

For maximum likelihood estimation, let us consider the logarithm of L(θ, x0, σe):

L(θ, x0, σe) = logL(θ, x0, σe) =

N∑
k=1

log

(
Φ

(
qv(k)+1 − x(k)

σe

)
− Φ

(
qv(k) − x(k)

σe

))
. (8)

Maximization of the log-likelihood L(θ, x0, σe) is performed through a gradient-
ascent approach, which requires to compute the gradients of L(θ, x0, σe) (at each
iteration of the gradient-ascent algorithm) with respect to the unknown vari-
ables θ, x0, and σe.
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3.2.1 Gradient with respect to the model parameters θ

The gradient of the log-likelihood L w.r.t. the model parameters θ can be

derived by simple rules of calculus and noticing that dΦ(x)
dx = N (x; 0, 1):

∂L
∂θ

=

N∑
k=1

N
(
qv(k)+1−x(k)

σe
; 0, 1

)
−N

(
qv(k)−x(k)

σe
; 0, 1

)
Φ
(
qv(k)+1−x(k)

σe

)
− Φ

(
qv(k)−x(k)

σe

) ×

1

σe

(
−∂x(k)

∂θ

)
. (9)

Note that evaluation of ∂L
∂θ requires to compute ∂x(k)

∂θ for all k = 1, . . . , N . Fol-
lowing the same approach commonly used in prediction error methods (PEM) [20,

Ch. 10], the partial derivatives ∂x(k)
∂ai

(with i = 1, . . . , na) and ∂x(k)
∂bj

(with

j = 1, . . . , nb) can be computed by taking the derivative of left and right side
of eq. (3) w.r.t. ai and bj , which yields

∂x(k)

∂ai
= x(k − i) +

na∑
t=1

at
∂x(k − t)

∂ai
, (10a)

and

∂x(k)

∂bj
=

na∑
i=1

ai
∂x(k − i)

∂bj
+ u(k − j). (10b)

Thus, ∂x(k)
∂ai

and ∂x(k)
∂bj

can be computed by simulating the difference equation

(10a) and (10b), respectively. Note that the term x(k) appearing in (9) and
(10a) has to be computed at each iteration of the gradient-ascent algorithm
by simulating the dynamical model (3) using the current value of the model
parameters θ and of the initial conditions x0.

3.2.2 Gradient with respect to the initial conditions x0

The gradient of the log-likelihood L w.r.t. the initial conditions x0 is given by

∂L
∂x0

=

N∑
k=1

N
(
qv(k)+1−x(k)

σe
; 0, 1

)
−N

(
qv(k)−x(k)

σe
; 0, 1

)
Φ
(
qv(k)+1−x(k)

σe

)
− Φ

(
qv(k)−x(k)

σe

) ×

1

σe

(
−∂x(k)

∂x0

)
(11)

The gradient ∂x(k)
∂x0

appearing in (11) is derived by differentiation the left and
right hand side of (3):

∂x(k)

∂x0
=

na∑
i=1

ai
∂x(k − i)
∂x0

. (12)
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Thus, ∂x(k)
∂x0

can be computed by simulating the autonomous dynamical system
(12), with initial conditions

∂x(1− j)
∂x0

= ena+1−j , j = 1, . . . , na (13)

where ej is the canonical vector, which has value zero for all elements except
for index j which takes value 1. It is worth pointing out that (13) holds if we do
not consider the inter-dependence within the elements of the initial conditions’
vector x0.

3.2.3 Derivative with respect to the noise standard deviation σe

The partial derivative of the log-likelihood w.r.t. the noise standard deviation
σe is given by:

∂L
∂σe

=

N∑
k=1

−N
(
qv(k)+1−x(k)

σe
; 0, 1

) (
qv(k)+1 − x(k)

)
σ2
e

−
−N

(
qv(k)−x(k)

σe
; 0, 1

) (
qv(k) − x(k)

)
σ2
e

×
1

Φ
(
qv(k)+1−x(k)

σe

)
− Φ

(
qv(k)−x(k)

σe

) . (14)

Note that the terms ∂L
∂θ (eq. (9)), ∂L

∂x0
(eq. (11)) and ∂L

∂σe
(eq. (14)) have

several factors in common that can be evaluated only once at each iteration to
reduce the computational burden of the gradient-ascent algorithm.

4 Bayesian inference

In this section, we address the estimation of θ, x0 and σe in a Bayesian setting,
and thus we aim at computing the posterior probability distribution p(θ, x0, σe|V,U).
In order to simplify the derivations and to take into account the constraint
σe > 0, the distribution of the noise e(k) is parametrized in terms of the log-
arithm τ̄ of the noise precision, i.e., τ̄ = log σ−2

e . Thus, in the following, our
distribution of interest is p(θ, x0, τ̄ |V,U).

As a prior distribution for θ, x0 and τ̄ , we assume an isotropic Gaussian
with zero mean and covariance matrix λ2I, i.e.,

p(θ, x0, τ̄) = N ([θ> x>0 τ̄ ]>; 0, λ2I) (15)

where λ is a positive hyper-parameter and I is the identity matrix of size (nθ +
na + 1).

8



From Bayes’ rule, the posterior probability distribution of the unknown pa-
rameters θ, x0 and τ̄ is given by:

p(θ, x0, τ̄ |V,U) =
p(V|U , θ, x0, τ̄)p(θ, x0, τ̄)

p(V|U)
. (16)

4.1 Maximum-a-posteriori estimation

We first focus on the computation of the maximum-a-posteriori (MAP) estimate
of θ, x0 and τ̄ , which is by definition the mode of the posterior distribution
p(θ, x0, τ̄ |V,U). As in the case of maximum likelihood estimation discussed in
Section 3, a gradient-ascent approach is used to maximize (w.r.t. θ, x0 and τ̄)
the logarithm of the posterior (16), which is given by:

log p(θ, x0, τ̄ |V,U) = L(θ, x0, τ̄)+log p(θ, x0, τ̄)

− log p(V|U). (17)

Note that the term log p(V|U) in the previous equation does not depend on
θ, x0, τ̄ and thus it is ignored in the optimization. The gradient of the log-
likelihood L(θ, x0, τ̄) is provided in Section 3. More precisely, eq. (14) actually
provides the derivative of L(θ, x0, τ̄) w.r.t. the noise standard deviation σe.
Nevertheless, the derivative of L(θ, x0, τ̄) w.r.t. τ̄ can be easily computed from
(14), and it is equal to

∂L
∂τ̄

=
∂L
∂σe

∂σe
∂τ̄

= −1

2

∂L
∂σe

1√
exp(τ̄)

(18)

As for the log-prior log p(θ, x0, τ̄), it is equal to

log p(θ, x0, τ̄) = −λ
−2

2
[θ> x>0 τ̄ ]

 θx0

τ̄

+ const, (19)

where “const” is a quantity independent of θ, x0, τ̄ . Then, the gradient of the
log-prior can be easily computed and is given by:

∂ log p(θ, x0, τ̄)

∂[θ> x>0 τ̄ ]
= −λ−2

 θx0

τ̄

 . (20)

Since the gradients of all the terms in (17) are available, the MAP estimate
of the variables θ, x0 and τ̄ can be computed using a gradient-ascent approach.
This estimate will be denoted as θMAP, xMAP

0 , τ̄MAP.

4.2 Posterior approximation

In the following, we present two possible approximations for the whole poste-
rior p(θ, x0, τ̄ |V,U), which is in general a complex and intractable probability
distribution.
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The first approach is based on Laplace’s method [3, Ch. 4.4] and leads to
a Gaussian approximation of the intractable distribution p(θ, x0, τ̄ |V,U). The
second approach is based on Monte Carlo sampling techniques and leads to a
point-mass approximation of the same distribution.

4.2.1 Version 1: Laplace approximation

Laplace’s method is used to approximate the posterior p(θ, x0, τ̄ |V,U) as a Gaus-
sian distribution. To this aim, the following second-order Taylor expansion of
the logarithm of the numerator in (16) centred around its peak (θMAP, xMAP

0 , τ̄MAP)
is considered

log (p(V|U , θ, x0, τ̄)p(θ, x0, τ̄)) ≈
log
(
p(V|U , θMAP, xMAP

0 ,τ̄MAP)p(θMAP, xMAP
0 , τ̄MAP)

)
+

− 1

2
[(θ−θMAP)> (x0−xMAP

0 )> (τ̄−τ̄MAP)]Λ

θ−θMAP

x0−xMAP
0

τ̄−τ̄MAP

 (21)

where Λ is the Hessian matrix of (minus) the log-posterior − log p(θ, x0, τ̄ |V,U)
evaluated at θMAP, xMAP

0 , τ̄MAP, whose entries contain the second derivatives of
(minus) the log-likelihood−L(θ, x0, τ̄) and of (minus) the log-prior− log(p(θ, x0, τ̄))
w.r.t. θ, x0, and τ̄ . Their analytical expressions are provided in Appendix A.
We remark that first-order term in the Taylor expansion (21) does not appear
since θMAP, xMAP

0 , τ̄MAP is a stationary point of p(V|U , θ, x0, τ̄)p(θ, x0, τ̄).
Laplace’s approximation of the posterior p(θ, x0, τ̄ |V,U) is obtained by tak-

ing the exponent of the Taylor expansion in (21) and normalizing it. This leads
to the Gaussian approximation

p(θ, x0, τ̄ |V,U) ≈ pLAP (θ, x0, τ̄ |V,U) =

=
|Λ|

1
2

(2π)
nθ+na+1

2

exp

−1

2

θ−θMAP

x0−xMAP
0

τ̄−τ̄MAP

>

Λ

θ−θMAP

x0−xMAP
0

τ̄−τ̄MAP


 . (22)

4.2.2 Version 2: MCMC approximation

In this paragraph, we discuss approximations of the entire posterior proba-
bility distribution p(θ, x0, τ̄ |V,U) using Markov Chain Monte-Carlo (MCMC)
algorithms, which attempt to simulate draws from a complex distribution of
interest [2].

The main idea behind application of MCMC to the considered inference
problem consists in generating a sequence of H random samples θ[h], x0[h], τ̄ [h],
h = 1, 2, . . . ,H, from an irreducible and aperiodic Markov chain whose sta-
tionary distribution is the target posterior p(θ, x0, τ̄ |V,U). Once samples are
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generated, the posterior is approximated by the empirical point-mass distribu-
tion

p(θ, x0, τ̄ |V,U) ≈ 1

H

H∑
h=1

δ(θ[h],x0[h],τ̄ [h])(θ, x0, τ̄). (23)

The independent sampler, an instance of the well known Metropolis-Hastings
MCMC method [2], is used to draw samples from p(θ, x0, τ̄ |V,U), as outlined in
Algorithm 1. The algorithm simulates a Markov Chain with stationary distribu-
tion p(θ, x0, τ̄ |V,U), and it requires to specify: an initial sample θ[0], x0[0], τ̄ [0];
a proposal distribution q(θ, x0, τ̄); the length H of the Markov Chain (namely,
the number of iterations).

At each iteration h, a candidate sample θ∗, x∗0, τ̄
∗ is drawn from the distribu-

tion q(θ, x0, τ̄) (Step 2) and accepted with probabilityA(θ∗, x∗0, τ̄
∗, θ[h], x0[h], τ̄ [h])

(Steps 3 and 4). It is worth noticing that acceptance probabilityA(θ∗, x∗0, τ̄
∗, θ[h], x0[h], τ̄ [h])

(eq. (24)) depends on the ratio
p(θ∗,x∗

0 ,τ̄
∗|V,U)

p(θ[h],x0[h],τ̄ [h]|V,U) and thus its evaluation does

not require to compute the normalization constant p(V|U) in (16). Furthermore,
for numerical reasons, it is often more convenient to compute the logarithm of
this ratio. If the candidate sample θ∗, x∗0, τ̄

∗ is accepted, then θ[h + 1], x0[h +
1], τ̄ [h+1] is set to θ∗, x∗0, τ̄

∗ (Step 6), otherwise θ[h+1], x0[h+1], τ̄ [h+1] is set
to the previous sample θ[h], x0[h], τ̄ [h] (Step 8). The output is the sequence of
samples {θ[h], x0[h], τ̄ [h]}Hh=1 generated during the execution of the algorithm.

It is well known that the choice of the proposal distribution q(θ, x0, τ̄) is
crucial in any Metropolis-Hastings MCMC algorithm to rapid convergence to
the target distribution. The proposal density leading to fastest convergence is
obviously q(θ, x0, τ̄) = p(θ, x0, τ̄ |V,U). Unfortunately, p(θ, x0, τ̄ |V,U) cannot
be directly sampled, as it represents itself the target distribution to be approx-
imated. Based on the above considerations, a reasonable proposal distribution
is the Laplace approximation pLAP (θ, x0, τ̄ |V,U) derived in Section 4.2.1.

Remark 1 Since in general it is not possible to know a-priori the number of
iterations needed by the Markov chain to reach its equilibrium distribution, it
is a common practice to discard an initial set of samples in order to reduce the
effect of the transient in the simulation of the Markov chain. This practice is
known as burn-in strategy [2].

4.3 Inference of system’s output sequence

In this section, we discuss the estimation of the system’s output x?(k) given a
new (not used for training) sequence of inputs U?k−1 = {u?(t)}k−1

t=−nb+1 up to
time k − 1. Formally, we would like to compute the probability distribution
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Algorithm 1 Approximation of the posterior distribution p(θ, x0, τ̄ |V,U)
through independent sampler MCMC.

Inputs: initial samples θ[0], x0[0], τ̄ [0]; proposal distribution q(θ, x0, τ̄); data
samples V and U .

1: for h = 0, . . . ,H − 1 do
2: draw candidate sample θ∗, x∗0, τ̄

∗ from proposal q(θ, x0, τ̄);
3: set acceptance probability

A(θ∗, x∗0, τ̄
∗, θ[h], x0[h], τ̄ [h])←

min
{

1,
p(θ∗,x∗

0 ,τ̄
∗|V,U)q(θ[h],x0[h],τ̄ [h])

p(θ[h],x0[h],τ̄ [h]|V,U)q(θ∗,x∗
0 ,τ̄

∗)

}
; (24)

4: accept candidate θ∗, x∗0, τ̄
∗ with probability

A(θ∗, x∗0, τ̄
∗, θ[h], x0[h], τ̄ [h]);

5: if the θ∗, x∗0, τ̄
∗ is accepted then

6: θ[h+ 1], x0[h+ 1], τ̄ [h+ 1]← θ∗, x∗0, τ̄
∗;

7: else
8: θ[h+ 1], x0[h+ 1], τ̄ [h+ 1]← θ[h], x0[h], τ̄ [h];
9: end if

10: end for

Output: Samples {θ[h], x0[h], τ̄ [h]}Hh=1.

p(x?(k)|V,U ,U?k−1), which is factorized as

p(x?(k)|V,U ,U?k−1)

=

∫ (∫
p(x∗(k)|θ,U?k−1, x

?
0)p(x?0)dx?0︸ ︷︷ ︸

p(x?(k)|θ,U?k−1)

)
p(θ|V,U)dθ, (25)

where p(x?0) represents the prior distribution of the initial conditions x?0 =
[x?(0), . . . , x?(−na +1)]> of the new sequence, which is assumed to be Gaussian
with mean x̄?0 and covariance matrix Cov(x?0).

Note that the integral
∫
p(x∗(k)|θ,U?k−1, x

?
0)p(x?0)dx?0 = p(x∗(k)|θ,U?k−1) rep-

resents the probability distribution of the output of the LTI system (3) for a
given input sequence U?k−1, given parameters θ and Gaussian-distributed initial
conditions x?0. In order to compute this integral, it is convenient to split the
system’s response x?(k) into a forced response term x?F (k) driven by the (deter-
ministic) input U?k−1 and a natural response term x?N (k) due to the (stochastic)

12



initial condition x?0:

x?F (k) =

na∑
i=1

aix
?
F (k − i) +

nb∑
j=1

bju
?(k − j)

with x?F (k) = 0 for k ≤ 0 (26a)

x?N (k) =

na∑
i=1

aix
?
N (k − i)

with x?N (−k) = x̄?0[k + 1] for k ≤ 0 (26b)

x?(k) = x?F (k) + x?N (k). (26c)

For a given value of θ, the forced response term x?F (k) in (26a) is deterministic,
since the input sequence U?k−1 is known. Conversely, the natural response term
x?N (k) in (26b) is stochastic since the initial condition x?0 is a random variable.
Specifically, x?N (k) may be written as

x?N (k) = EAkx?0, (27)

where

A =



0 1 0 . . . 0 0
0 0 1 . . . 0 0

0 0 0
. . .

...
...

...
... 0 0 1 0

0 0 0 0 0 1
ana ana−1 ana−2 . . . a2 a1


, (28a)

E =
[
0 0 . . . 0 1

]
. (28b)

Therefore, the probability distribution of x?(k) given θ is also Gaussian:

p(x?(k)|θ,U?k−1) =

N
(
x?(k);x?F (k; θ) + EAkx̄?0, EA

kCov(x?0)
(
Ak
)>
E>
)
. (29)

Given the explicit expression of p(x?(k)|U?k , θ) in (29), the integral
∫
p(x?(k)|U?k , θ)p(θ|V,U)dθ

in (25) is approximated via Monte-Carlo sampling, either generating samples
{θ[h]}Hh=1 from the marginal (over x0 and τ̄) of the Laplace approximation
pLAP (θ, x0, τ̄ |V,U) (eq. (22)) or using the samples already drawn through the
MCMC scheme (Algorithm 1). The final distribution p(x?(k)|V,U ,U?k−1) is then
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approximated by a mixture of Gaussian distributions, i.e.,

p(x?(k)|V,U ,U?k−1) =
1

H

H∑
h=1

p(x∗(k)|θ[h],U?k−1) =

1

H

H∑
h=1

N
(
x?(k);x?F (k; θ[h])+EAk[h]x̄?0,

EAk[h]Cov(x?0)
(
Ak[h]

)>
E>
)
, (30)

where Ak[h] denotes the value of the matrix Ak computed for θ = θ[h].

5 Filtering

In this section, we consider the problem of iteratively reconstructing the non-
quantized output x?(k) at time k given:

� past estimate x?(k − 1) at time k − 1 inferred from new sequences (not
used for training) of quantized outputs V?k−1 and inputs U?k−1 up to time
k − 1;

� new input u?(k) and quantized output v?(k);

� uncertain model parameters θ and the log of the noise precision τ̄ described
by the posterior distribution p(θ, τ̄ |V,U), obtained by marginalizing either
the Laplace in (22) or the MCMC approximation in (23) w.r.t. the initial
condition x0.

Specifically, we aim at recursively approximating the probability distribution
p(x?(k)|V?k ,U?k ,V,U) from p(x?(k−1)|V?k−1,U?k−1,V,U). In this work, we do not
exploit the new sequences V?k and U?k to update the probability distribution of
θ and τ̄ . Formally, we approximate p(x?(k)|V?k ,U?k ,V,U) as follows:

p(x?(k)|V?k ,U?k ,V,U)

=

∫
p(x?(k)|θ, τ̄ ,V?k ,U?k ,V,U)p(θ, τ̄ |V?k ,U?k ,V,U)dθdτ̄

=

∫
p(x?(k)|θ, τ̄ ,V?k ,U?k )p(θ, τ̄ |V?k ,U?k ,V,U)dθdτ̄

≈
∫
p(x?(k)|θ, τ̄ ,V?k ,U?k )p(θ, τ̄ |V,U)dθdτ̄ . (31)

The above integral is then approximated through Monte-Carlo sampling as
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follows: ∫
p(x?(k)|θ, τ̄ ,V?k ,U?k )p(θ, τ̄ |V,U)dθdτ̄

≈ 1

H

H∑
h=1

p(x?(k)|θ[h], τ̄ [h],V?k ,U?k ) (32)

where θ[h], τ̄ [h] are either drawn from the Laplace approximation of p(θ, τ̄ |V,U)
or already available from the MCMC approximation (23).

The probability distribution (32) is approximated using a bank of particle
filters. To this aim, we represent the system (3) in the controllable canonical
state-space form:

x̃(k) =Ax̃(k − 1) +Bu(k − 1) (33a)

x(k) =Cx̃(k) (33b)

with B =
[
0 · · · 0 1

]>
, C =

[
bnb

· · · b2 b1
]
, and A in (28a).1

Based on the above state-space representation, the evolutionary equation
of x̃?(k) for a given model parameter θ[h] and the related non-linear output
equation are given by:

x̃?(k) =A[h]x̃?(k − 1) +Bu?(k) + η(k) (34a)

v?(k) =Q(C[h]x̃?(k) + e?(k)) (34b)

where A[h] and C[h] are the matrices in (33) defined for the sample θ[h], and
η(k) ∈ Rna is a fictitious white process noise (described by a probability distri-
bution p(η)) which is introduced to take into account a possible model mismatch
between (34a) and the underlying dynamics (33a).

Using particle filter algorithms, the probability distribution p(x̃?(k)|θ[h], τ̄ [h],V?k ,U?k )
in (32) is iteratively approximated with the empirical point-mass distributions

p(x̃?(k)|θ[h], τ̄ [h],V?k ,U?k ) ≈
Np∑
l=1

wh,l(k)δx̃?h,l(k)(x̃
?(k)), (35)

based on p(x̃?(k−1)|θ[h], τ̄ [h],V?k−1,U?k−1) and current values of v?(k) and u?(k).
In (35), Np is the number of particles; x̃?h,l(k) is the position of the l-th particle
at time k associated to the sample θ[h] and τ̄ [h]; and wh,l are non-negative

weights associated to the particle, with
∑Np
l=1 wh,l = 1. The distribution of

interest p(x?(k)|θ[h], τ̄ [h],V?k ,U?k ) can be easily obtained from (35) as

p(x?(k)|θ[h], τ̄ [h],V?k ,U?k ) ≈
Np∑
l=1

wh,l(k)δx?h,l(k)(x
?(k)), (36)

with x?h,l(k) = C[h]x̃?h,l(k). To avoid notational clutter, the index h is omitted
from x̃?h,l(k) and wh,l in the following.

1The considered controllable canonical state-space form holds for na = nb.
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5.1 Particle filter algorithm

For every sample θ[h] and τ̄ [h] (or equivalently σe[h]), the particles {x̃?l (k)}Npl=1

and the corresponding weights {wl}
Np
l=1 are computed recursively at each time

step k using the particle filter algorithm outlined in Algorithm 2. From line 2 to
line 6, Np particles are sampled either from the prior distribution of the initial
conditions x̃?(0) (if k = 1) or from the approximated probability distribution of
x̃?l (k − 1) (if k > 1) obtained from the previous iteration of the algorithm.

At line 8, the particle’s position x̃?l (k) of the l-th particle at time k is updated
based on the previous position of the same particle by sampling the stochastic
model dynamics (34a). Then, the particle’s weights are updated (line 9) ac-
cording to the conditional likelihood p(v?(k)|x̃?l (k)) and normalized (line 11).
Given particles’ position and corresponding weights, the probability distribu-
tions p(x̃?(k)|θ[h], τ̄ [h],V?k ,U?k ) and p(x?(k)|θ[h], τ̄ [h],V?k ,U?k ) are approximated
as in (35) and (36), respectively.

Algorithm 2 Iterative update of particles {x̃?l (k)}Npl=1.

1: for k = 1, 2, . . . do
2: if k = 1 then
3: sample Np particles of the initial conditions {x̃?l (0)}Npl=1 from a prior
p(x̃?(0))

4: else
5: resample particles {x̃?l (k − 1)}Npl=1 from probability distribution∑Np

l=1 wlδx?l (k−1)(x̃
?(k − 1));

6: end if
7: for l = 1, . . . , Np do
8: generate new particle positions x̃?l (k) from the evolutionary equa-

tion (34a)
9: set weights

wl(k)← p(v?(k)|x̃?l (k))

with

p(v?(k)|x̃?l (k)) =

Φ

(
qv?(k+1) − C[h]x̃?l (k)

σe[h]

)
− Φ

(
qv?(k) − C[h]x̃?l (k)

σe[h]

)
10: end for
11: normalize weights wl(k)← wl(k)∑Np

j=1 wj(k)

12: end for

Output: at each iteration k, return particles’ position {x̃?l (k)}Npl=1 and weights

{wl}
Np
l=1.
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6 Numerical example

The effectiveness of the proposed identification algorithm is demonstrated via
a numerical example. All computations are carried out on an i7 1.9-GHz Intel
core processor with 32 GB of RAM running MATLAB R2019a. Results of
the examples can be replicated by running the MATLAB codes that can be
downloaded at http://dariopiga.com/Software/QuBay.rar.

The data are generated by a linear difference system described as in (3)
with model orders na = 4 and nb = 4. The true parameters of the system are
a = [0.3 − 0.4 0.5 − 0.6] and b = [0.8 0.7 − 0.2 0.1]. We consider a training
data with N = 2000 samples, generated by exciting the system with a white
input signal which is a uniformly distributed in the interval [−1 1]. The output
is corrupted by a zero-mean Gaussian noise e(k) with variance σ2

e = 0.36.
In order to asses the statistical properties of the proposed method, a Monte-

Carlo simulation of 100 runs is performed. At each run, a new realization of
input and noise process is generated. The average Signal-to-Noise Ratio (SNR)
over 100 runs is 9.8 dB, where the SNR for a single Monte-Carlo run is defined
as

SNR = 10 log

∑N
k=1 x

2(k)∑N
k=1 e

2(k)
. (37)

For each Monte-Carlo run, the maximum-likelihood (ML) and maximum-a-

posteriori (MAP) estimates of the parameters θ̄ =
[
θ> x>0 τ̄

]>
are computed

(as detailed in Section 3) using a gradient-ascent algorithm. For MAP estimates,
an isotropic Gaussian prior with λ = 1 in (15) is chosen. In the gradient-ascent
algorithm, the initial condition of each parameter value is chosen randomly
from a uniform distribution in the interval (0, 1). The algorithm is terminated
either when the maximum number of iterations hmax = 350 is reached or when
the norm of the variation of the objective function between two consecutive
iterations is smaller than 10−8.

The ML and MAP estimates of the model parameters and noise standard
deviation σe are reported in Table 1, for data generated using K = 8 quantiza-
tion intervals, uniformly spaced in the range [q1 qK+1] = [−9 7]. A close match
between true and estimated parameters can be observed.

In order to asses the effect of the number of quantization intervals K on
the estimate of the model parameters, we compute the ML and MAP esti-
mates for three different quantization intervals K = 2, 4, 8. For binary quan-
tizer K = 2, the quantization level q2 in (6) is set to q2 = 1. For quantizers
with K = 4 and K = 8, the quantization levels are uniformly spaced in the
range [q1 qK+1] = [−9 8]. The identified models with ML and MAP estimates
are used to reconstruct the outputs of the model (3). The match between the
estimated and the true output is quantified on a noise-free validation data of
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Table 1: Monte-Carlo analysis with 100 runs: true vs estimated model param-
eters (mean ± std deviation) with K = 8 level quantizer.

True ML estimate MAP estimate
(mean ± std) (mean ± std)

a1 0.30 0.2998± 0.0219 0.2941± 0.0222
a2 −0.40 −0.4037± 0.0160 −0.4035± 0.0152
a3 0.50 0.4961± 0.0130 0.4964± 0.0121
a4 −0.60 −0.5969± 0.0193 −0.5959± 0.0168
b1 0.80 0.7990± 0.0386 0.8001± 0.0379
b2 0.70 0.7075± 0.0318 0.7112± 0.0303
b3 −0.20 −0.1976± 0.0427 −0.1903± 0.0416
b4 0.1 0.1134± 0.0460 0.1108± 0.0438
σe 0.6 0.6008± 0.0167 0.6296± 0.0142

length Nval = 1000, in terms of the Best Fit Rate (BFR) index defined by:

BFR = max

1−

√√√√∑Nval

k=1 (x(k)− x̂(k))
2∑Nval

k=1 (x(k)− x̄(k))
2
, 0

× 100%, (38)

where x(k) and x̂(k) are the (non-quantized) true and open-loop simulated
model output at time k, respectively and x̄ is the sample mean of the output
over the validation set.

The box-plots of the BFR with three quantization levels K = 2, 4, 8 are
plotted in Fig. 1. It can be seen from Fig. 1 that with ML and MAP estimates
of the parameters, the output is accurately reconstructed with quantized data
for all three quantization levels. As expected, the overall accuracy increases
with the number of quantization intervals.

Next, we compute the ML and MAP estimates by changing the length N of
the training data set for a binary quantizer K = 2. In Fig. 2 we report the BFR
and the norm of the parameter estimation error ‖θo − θ‖2 and the CPU time,
for different values of N . The accuracy of the estimated parameters increases
with increase in data size N , at the cost of a linear increase in computation
time.

Laplace approximation and MCMC
We now compute the approximation of the conditional posterior p(θ, x0, τ̄ |V,U)

using both Laplace’s method and MCMC algorithm, as described in Section 4.2.
Starting from the MAP estimates θMAP, xMAP

0 , τ̄MAP, the Hessian Λ of (mi-
nus) the log posterior is computed and the expression of the Laplace approxima-
tion in (22) is obtained. The average execution time to compute the Hessian Λ
is 0.036 sec, with a training data of length N = 2000 samples, quantized with a
binary quantizer K = 2. The MAP estimates and the estimated standard devia-
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Figure 1: Monte-Carlo analysis: boxplots of achived BFR indices with ML and
MAP estimates for data quantized with different quantization levels K = 2, 4, 8.

Table 2: True vs estimated model parameters, mean ± standard deviation com-
puted via Laplace approximation and MCMC, with binary K = 2 quantized
data, for a single realization of input and noise sequence.

True Laplace approx MCMC estimate
(mean ± std) (mean ± std)

a1 0.30 0.3193± 0.0414 0.3125± 0.0362
a2 −0.40 −0.3887± 0.0294 −0.4025± 0.0193
a3 0.50 0.4822± 0.0260 0.4756± 0.0205
a4 −0.60 −0.6142± 0.0262 −0.6129± 0.0247
b1 0.80 0.8315± 0.0486 0.8129± 0.0437
b2 0.70 0.7275± 0.0637 0.7005± 0.0543
b3 −0.20 −0.2446± 0.0792 −0.2013± 0.0589
b4 0.1 0.1283± 0.0767 0.1508± 0.0600
τ̄ 1.02 0.7285± 0.0641 1.0276± 0.0808

tions of the parameters corresponding to the computed Laplace’s approximation
are reported in Table 2.

In order to approximate the posterior p(θ, x0, τ̄ |V,U) via MCMC, Algorithm
1 is run for M = 5000 iterations. According to the burn-in strategy, the first
1000 samples of the Markov chain are discarded. The execution time to run
Algorithm 1 is 12.1 seconds. Based on the samples generated by Algorithm 1,
the estimated mean along with estimated standard deviations of the parameters
are reported in Table 2 for a binary K = 2 quantizer.

From Table 2, it can be noted that both Laplace’s method and the MCMC
algorithm provide an approximation of the desired posterior distribution such
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that the true parameters lie in the uncertainty intervals defined by the standard
deviations.

The performance of the Laplace and MCMC approximations is further as-
sessed for data generated with different quantization levels K = 2, 4, 8. The
quantization levels q1, . . . , qK considered are {−5, 1, 6} forK = 2, {−5,−3, 1, 2, 6}
for K = 4 and {−5,−3,−2,−1, 1, 2, 3, 4, 6} for K = 8 level quantizers. For
brevity, the estimate of parameter a1 along with its 3-standard deviations in-
tervals, computed from the Hessian Λ of Laplace approximation and through
the MCMC samples are plotted in Fig. 3. We observe a slight reduction in the
uncertainty intervals with increase in the number of quantization intervals.

Finally, in order to asses the robustness of MCMC w.r.t different input and
noise realizations, we perform Monte-Carlo analysis with 100 runs. At each
run, the posterior is approximated via the Laplace and the MCMC approaches,
and mean and standard deviations of parameters are recorded. Figure 4 shows
the mean and 3x standard deviation uncertainty intervals of parameter value
b1 = 0.8, obtained over different Monte Carlo runs. It can be observed that
the true parameter value belongs to the uncertainty intervals computed from
the Laplace and MCMC approximations of the posterior. Furthermore, uncer-
tainty intervals provided by MCMC are tighter than the ones obtained through
Laplace’s method, showing that MCMC approximation is more accurate than
Laplace’s method, at the price of a higher computational load.

Inference
Based on the samples generated by the MCMC algorithm, we infer the out-

put x?(k) for a new sequence of inputs U?k−1 as detailed in Section 4.3. To
this end, we consider a new white input sequence of length 1000 samples gen-
erated from a uniform distribution in the interval [−1 1], which is not used for
training. The distribution of the inferred output x?(k) sequence is computed
according to eq. (30), by choosing the prior distribution of the initial states x?0 as
an isotropic zero-mean Gaussian with covariance matrix (0.01)Ina . Note that
the distribution p(x?(k)|V,U ,U?k−1) in (30), is a mixture of Gaussians whose
mean and variance can be computed analytically and are given by

µx?(k) =
1

H

H∑
h=1

µ[h, k],

σ2
x?(k) =

1

H

H∑
h=1

σ2[h, k] +
1

H

H∑
h=1

(µ[h, k]− µx?(k))
2,

where H = 4000 is the number of MCMC samples and µ[h, k] = x?F (k; θ) +

EAkx̄?0 and σ2[h, k] = EAkCov(x?0)
(
Ak
)>
E>, are derived according to (26c)

and (27). The mean µx?(k) and the uncertainty interval corresponding to 3x
standard deviations 3σx?(k) of the inferred output distribution p(x?(k)|V,U ,U?k−1)
are plotted in Fig. 5, for K = 2 and K = 8 quantization intervals. For the
sake of better visualization, only a subset of output sequence is plotted. It can
be observed that the reconstructed output matches closely with the true one.
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Moreover, the variance of the estimated output is reduced with the increase in
the number of quantization levels.

Filtering
We now compute the distribution p(x?(k)|V?k ,U?k ,V,U) (given in (32)) of the

latent output at time k given past observations, as described in Section 5. To
this end, we first compute the conditional distribution p(x̃?(k)|θ[h], τ̄ [h],V?k ,U?k )
given in (36) for each of the MCMC samples {θ[h], τ̄ [h]}Hh=1 via the particle filter
approach in Algorithm 2.

A dataset with 2000 samples is processed sequentially, simulating a scenario
where data are acquired and processed in real time. At each time k, the poste-
rior p(x̃?(k)|θ[h], τ̄ [h],V?k ,U?k ) is updated based on Algorithm 2 with Np = 100

particles. Initial conditions {x̃?l (0)}Npl=1 of the particles are sampled from a prior
distribution p(x̃?(0)) which is chosen to be an isotropic Gaussian with zero-mean

and covariance 0.01Ina
. At each successive time steps, the particles {x̃?l (k)}Npl=1

are sampled according to the evolutionary equation (34a). In particular, the
distribution of the process noise η is chosen to be zero-mean isotropic Gaussian
p(η) = N (η; 0, σ2

ηI)). According to (34a), each particle {x̃?l (k)} is generated
from a Gaussian distribution with mean A[h]x̃?l (k − 1) + Bu?(k) and variance
σ2
η = (0.05)2 chosen via trial and error. Once the particles {x̃?l (k)} are com-

puted, the output {x?l (k)} is obtained as x?l (k) = C[h]x̃?l (k) and the distribution
of interest p(x?(k)|θ[h], τ̄ [h],V?k ,U?k ) is computed according to (36). The execu-
tion time required by Algorithm 2 to process 2000 samples for a single MCMC
sample is 0.52 sec.

Finally, the filtering distribution p(x?(k)|V?k ,U?k ,V,U) is approximated as
given in (32), by running the particle filter algorithm for each MCMC sam-
ple {θ[h], τ̄ [h]}Hh=1. The mean and variance of this distribution are computed
according to

µx?(k) =
1

H

H∑
h=1

µ[h, k],

σ2
x?(k) =

1

H

H∑
h=1

(σ2[h, k] + (µ[h, k])2)− (µx?(k))
2,

where H = 4000 is the length of MCMC samples and µ[h, k] and σ2[h, k] denote
the mean and variance of discrete distribution p(x?(k)|θ[h], τ̄ [h],V?k ,U?k ) (36),
which are computed using the computed probability distributions (36). The
expected value µx?(k) of the output x?(k) is plotted in Fig 6, along with the un-
certainty intervals ±3σx?(k) for a binary quantizer K = 2. The plot shows that
particle filtering algorithm is able to recursively reconstruct the non-quantized
output of the true system accurately.

6.1 Analysis for multiple data-generating systems

In order to asses the robustness of the proposed method, we compute the ML and
MAP estimates for different data generating systems. Using MATLAB’s drss
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command, 15 different 4-th order stable LTI state-space models are generated.
The quantized measurements with three different quantization intervals K =
2, 4, 8, are gathered for each system with training and validation data of lengths
2000 and 1000 samples, respectively. The quantization intervals are spaced
uniformly between the minimum and maximum value of the system output. The
training output is corrupted with a Gaussian noise leading to average signal-to-
noise ratio of 10 dB.

We compute the ML and MAP estimates for the model (3) with model orders
set to na = 4 and nb = 4. For MAP estimates, an isotropic Gaussian prior with
λ = 1 in (15) is chosen. For each system, the gradient-ascent algorithm is run for
800 iterations, with initial condition of each parameter chosen randomly from a
uniform distribution in the interval (0, 0.1). The box-plots of the achieved BFR
index with three quantization levels K = 2, 4, 8 are plotted in Fig. 7. It can
be seen from Fig. 7 that the output is accurately reconstructed with quantized
data for all 15 systems, with only a few outliers.

7 Conclusions

A Bayesian framework for transfer function estimation of linear dynamical sys-
tems from quantized output observations is discussed in the paper. A (log)-
likelihood function of the system parameters, initial conditions and noise stan-
dard deviation is formulated. Its gradient is computed and used in a gradient-
ascent algorithm for maximum likelihood and maximum-a-posteriori estimation.
The Hessian of the posterior distribution is also computed, and used to approx-
imate the posterior distribution of the unknown variables through Laplace’s
method. A Markov-Chain Monte-Carlo approximation of the posterior is also
proposed, exploiting the Laplace approximation as a proposal distribution. Pre-
dictive inference is also addressed. Finally, a filtering problem is considered and
particle filters are used to recursively reconstruct a latent (non-quantized) out-
put from past (quantized) observations. This can be useful in control design,
where the hidden non-quantized output can be used both to assess closed-loop
performance and to make prediction of the next output sequence, for example
in model-predictive control.

Several extensions of the proposed contribution are currently under inves-
tigation, which include: parametric Bayesian estimation of non-linear systems,
experiment design and optimal choice of the quantization level for minimization
of model uncertainty.
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A Second-order derivatives of the log posterior

In this appendix, we derive the analytical expressions of the second-order deriva-
tives of the log-posterior distribution log p(θ, x0, τ̄ |V,U). These derivatives are
required to construct the Hessian Λ used to compute the Laplace approximation
discussed in Section 4.2.1.

For the sake of exposition, we remind the expression of the log-posterior
distribution log p(θ, x0, τ̄ |V,U):

log p(θ, x0, τ̄ |V,U) =

N∑
k=1

log

(
Φ

(
qv(k)+1 − x(k)

σe

)
− Φ

(
qv(k) − x(k)

σe

))
︸ ︷︷ ︸

L(θ,x0,τ̄)

(39a)

−λ
−2

2
[θ> x>0 τ̄ ]

 θx0

τ̄

+ const

︸ ︷︷ ︸
log p(θ,x0,τ̄)−log p(V|U)

, (39b)

where we recall that σe =
√

exp(−τ̄).
The Hessian of the quadratic form in eq. (39b) is given by:

∂2 log p(θ, x0, τ̄)

∂[θ> x>0 τ̄ ]2
= −λ−2I,

where I is the identity matrix of size nθ + na + 1.
As for the Hessian of the log-likelihood L in (39a), we first define the following

25



terms that will help to compact the notation:

Ng(k)=N
(
Qv(k)+1 − x(k)

σe
; 0, 1

)
−N

(
Qv(k) − x(k)

σe
; 0, 1

)
,

Dg(k) = Φ

(
Qv(k)+1 − x(k)

σe

)
− Φ

(
Qv(k) − x(k)

σe

)
,

Nd(k)=N ′
(
Qv(k)+1 − x(k)

σe
; 0, 1

)
−N ′

(
Qv(k) − x(k)

σe
; 0, 1

)
,

F1(k) = N
(
Qv(k)+1 − x(k)

σe
; 0, 1

)
× (Qv(k)+1 − x(k)),

F2(k) = N
(
Qv(k) − x(k)

σe
; 0, 1

)
× (Qv(k) − x(k)),

G1(k) = N ′
(
Qv(k)+1 − x(k)

σe
; 0, 1

)
× (Qv(k)+1 − x(k)),

G2(k) = N ′
(
Qv(k) − x(k)

σe
; 0, 1

)
× (Qv(k) − x(k)),

where N ′ is the derivative of the probability density function of the Normal
distribution w.r.t. to its argument, i.e.,

N ′ (x; 0, 1) = −xN (x; 0, 1) .

In Section 3.2.1 we have already computed the gradient of L w.r.t. θ, which
is reported in the following to facilitate reading:

∂L
∂θ

=

N∑
k=1

Ng(k)

Dg(k)
× 1

σe

(
−∂x(k)

∂θ

)
.

Then, we have

∂2L
∂θ2

=

− 1

σ2
e

N∑
k=1

Nd(k)∂x(k)
∂θ ×Dg(k)−N2

g (k)∂x(k)
∂θ

D2
g(k)

(
−∂x(k)

∂θ

)>

+
1

σe

N∑
k=1

Ng(k)

Dg(k)

(
−∂

2x(k)

∂θ2

)
. (40)

The second-order derivatives ∂2x(k)
∂2θ appearing in (40) are derived by taking
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derivatives of left and right expression of (10) as follows:

∂2x(k)

∂az∂ai
=
∂x(k − i)
∂az

+
∂x(k − z)

∂ai
+

na∑
t=1

at
∂2x(k − t)
∂az∂ai

∂2x(k)

∂bz∂ai
=
∂x(k − i)
∂bz

+

na∑
t=1

at
∂2x(k − t)
∂bz∂ai

∂2x(k)

∂bz∂bj
=

na∑
i=1

ai
∂2x(k − i)
∂bz∂bj

∂2x(k)

∂az∂bj
=
∂x(k − z)

∂bj
+

na∑
t=1

at
∂2x(k − t)
∂az∂bj

As for the second-order derivatives w.r.t the initial conditions ∂2L
∂x2

0
, by dif-

ferentiating the gradient ∂L
∂x0

in (11) w.r.t. x0 we obtain

∂2L
∂x2

0

=

− 1

σ2
e

N∑
k=1

Nd(k)∂x(k)
∂x0
×Dg(k)−N2

g (k)∂x(k)
∂x0

D2
g(k)

(
−∂x(k)

∂x0

)>

+
1

σe

N∑
k=1

Ng(k)

Dg(k)

(
−∂

2x(k)

∂x2
0

)
. (41)

Thus, in order to compute the second-order derivatives in (41), ∂2x(k)
∂x2

0
is

required and derived by taking derivatives of left and right expression in (12):

∂2x(k)

∂x2
0

=

na∑
i=1

ai
∂2x(k − i)

∂x2
0

,

with ∂2x(k)
∂x2

0
= 0 for k ≤ 0 due to eq. (13).

As for the second-order derivative ∂2L
∂τ̄2 , we first compute ∂2L

∂σ2
e

by differenti-

ating the gradient ∂L
∂σe

in (14) w.r.t. σe, thus obtaining

∂2L
∂σ2

e

=

N∑
k=1

((
(qv(k)+1 − x(k))G1(k)− (qv(k) − x(k))G2(k)

σ4
e

)
−2

(
−F1(k) + F2(k)

σ3
e

))
× 1

Dg(k)
+

+

N∑
k=1

(
−F1(k) + F2(k)

σ2
e

)2 −1

D2
g(k)

.
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Then, in order to derive ∂2L
∂τ̄2 , we consider the relation

∂2L
∂τ̄2

=
∂

∂τ̄

(
∂L
∂τ̄

)
=

∂2L
∂σe∂τ̄

∂σe
∂τ̄

=

(
∂2L
∂σ2

e

∂σe
∂τ̄

+
∂L
∂σe

∂2σe
∂σe∂τ̄

)
∂σe
∂τ̄

=
1

4 exp(τ̄)

∂2L
∂σ2

e

+
1

4

∂L
∂σe

1√
exp(τ̄)

.

Mixed derivatives

Let us now compute the mixed derivative

∂2L
∂x0∂θ

=

− 1

σ2
e

N∑
k=1

Ng(k)∂x(k)
∂x0
×Dg(k)−N2

g (k)∂x(k)
∂x0

D2(k)

(
−∂x(k)

∂θ

)>

+
1

σe

N∑
k=1

Ng(k)

Dg(k)

(
−∂

2x(k)

∂x0∂θ

)
.

The mixed second order derivative ∂2x(k)
∂x0∂θ

can be computed by differentiating
(10a) and (10b) w.r.t. x0 as follows:

∂2x(k)

∂x0∂ai
=
∂x(k − i)
∂x0

+

na∑
t=1

at
∂2x(k − t)
∂x0∂ai

,

∂2x(k)

∂x0∂bj
=

na∑
t=1

at
∂2x(k − t)
∂x0∂bj

.

Let us now consider the mixed derivative ∂2L
∂θ∂τ̄

∂2L
∂θ∂τ̄

=

(
−1

2

)
1√

exp(τ̄)

∂2L
∂θ∂σe

.

We then compute

∂L
∂σe

=

N∑
k=1

(
−F1(k)

σ2
e

− −F2(k)

σ2
e

)
× 1

Dg(k)

and
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∂2L
∂θ∂σe

=

N∑
k=1

(
1

σ3
e

∂x(k)

∂θ
G1(k) +

1

σ2
e

∂x(k)

∂θ
N
(
qv(k)+1 − x(k)

σe
; 0, 1

))
× 1

Dg(k)

−
N∑
k=1

(
1

σ3
e

∂x(k)

∂θ
G2(k) +

1

σ2
e

∂x(k)

∂θ
N
(
qv(k) − x(k)

σe
; 0, 1

))
× 1

Dg(k)

−
N∑
k=1

(
−F1(k)

σ2
e

− −F2(k)

σ2
e

)
×
− 1
σe

∂x(k)
∂θ Ng(k)

D2
g(k)

.

Let us now consider the mixed derivative

∂2L
∂x0∂τ̄

=

(
−1

2

)
1√

exp(τ̄)

∂2L
∂x0∂σe

.

We then compute

∂2L
∂x0∂σe

=

N∑
k=1

(
1

σ3
e

∂x(k)

∂x0
G1(k)+

1

σ2
e

∂x(k)

∂x0
N
(
qv(k)+1 − x(k)

σe
; 0, 1

))
× 1

Dg(k)
+

−
N∑
k=1

(
1

σ3
e

∂x(k)

∂x0
G2(k)+

1

σ2
e

∂x(k)

∂x0
N
(
qv(k) − x(k)

σe
; 0, 1

))
× 1

Dg(k)

−
N∑
k=1

(
−F1(k)

σ2
e

− −F2(k)

σ2
e

)
×
− 1
σe

∂x(k)
∂x0

Ng(k)

D2
g(k)

.

This complete the computation of all the second-order derivatives required to
construct the Hessian Λ of the log-posterior distribution log p(θ, x0, τ̄ |V,U).
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(a) BFR vs data size.

(b) parameter estimation error vs data size.

(c) CPU time (s) vs data size.

Figure 2: Performance of the identified model with ML and MAP estimates
using binary quantizer K = 2 for different data sizes N .
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Figure 3: Laplace and MCMC approximation: (mean ± 3std) of the estimated
parameter a1 for different quantization levels K = 2, 4, 8. True values are
marked with red color.
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Figure 4: Monte-Carlo analysis: true value (red), mean (dashed black), mean
± 3std of the estimated parameter b1 (gray shaded area) via Laplace (top plot)
and MCMC (bottom plot) approximation for different Monte-Carlo simulations.
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Figure 5: Inference: True output x?(k); expected value of the output µx?(k)

(dashed black); confidence intervals µx?(k)± 3σx?(k) (shaded grey region), com-
puted with H = 4000 MCMC samples. Top panel: K = 2 quantization levels.
Bottom panel: K = 8 quantization levels.
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Figure 6: Particle filtering: true output x?(k); expected value of the output
µx?(k) (dashed black); confidence intervals µx?(k)±3σx?(k) (shaded gray region),
computed with H = 4000 MCMC samples and K = 2 quantization levels.
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Figure 7: Boxplots of achived BFR indices with ML (light gray) and MAP (dark
gray) estimates for 15 different data-generating systems.
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