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PWA models
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I PWA maps have universal approximation property.

I Equivalence between PWA and hybrid models.
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PWA models

X1

θ1

X2

θ2

X3

θ3

X4

θ4

X5

θ5

x

f
(x

)

True function
PWA map

f (x) =


θ1 x if x ∈ X1
...
θs x if x ∈ Xs
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Problem: PWA-OE identification

PWA Output-Error dynamical system:

yo(k) = f (xo(k))

y(k) = yo(k) + eo(k)

f (xo) =


(θo1)>

[
xo
1

]
if xo ∈ X1

...

(θos )>
[
xo
1

]
if xo ∈ Xs

xo(k) is the noise-free regressor

xo(k) = [yo(k−1)· · · yo(k−na) u(k−1)· · ·u(k−nb)]>

{Xi}si=1 are the polyhedral partition of the regressor space.
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Problem: PWA-OE identification

Model structure:

y(k) =


(θ1)>

[
x(k)

1

]
+ ε(k) if x(k) ∈ X1

...

(θs)>
[
x(k)

1

]
+ ε(k) if x(k) ∈ Xs

x(k) is the measured noisy regressor

x(k) = [y(k−1)· · · y(k−na) u(k−1)· · ·u(k−nb)]>

ε(k) is the residual, not necessarily white noise as in PWA-ARX.

IFAC 2020 6/ 31



Problem: PWA-OE identification

Model structure:

y(k) =


(θ1)>

[
x(k)

1

]
+ ε(k) if x(k) ∈ X1

...

(θs)>
[
x(k)

1

]
+ ε(k) if x(k) ∈ Xs

x(k) is the measured noisy regressor

x(k) = [y(k−1)· · · y(k−na) u(k−1)· · ·u(k−nb)]>

ε(k) is the residual, not necessarily white noise as in PWA-ARX.

IFAC 2020 6/ 31



Problem: PWA-OE identification

Model structure:

y(k) =


(θ1)>

[
x(k)

1

]
+ ε(k) if x(k) ∈ X1

...

(θs)>
[
x(k)

1

]
+ ε(k) if x(k) ∈ Xs

x(k) is the measured noisy regressor

x(k) = [y(k−1)· · · y(k−na) u(k−1)· · ·u(k−nb)]>

ε(k) is the residual, not necessarily white noise as in PWA-ARX.

IFAC 2020 6/ 31



Problem: PWA-OE identification

Model structure:

y(k) =


(θ1)>

[
x(k)

1

]
+ ε(k) if x(k) ∈ X1

...

(θs)>
[
x(k)

1

]
+ ε(k) if x(k) ∈ Xs

Goal:
Given {u(k), y(k)}Nk=1 and the model structure na, nb, s

I compute consistent estimates of {θoi }si=1

I find a polyhedral partition {Xi}si=1.
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Algorithm: PWA-OE identification

Stage S1. I estimation of the bias-corrected model
parameters {θi}si=1.

I simultaneous clustering of the regressors.

Stage S2. I computation of polyhedral partition of the
regressor space {Xi}si=1 using multi-category
discrimination.

IFAC 2020 9/ 31



Algorithm: PWA-OE identification

Stage S1. I estimation of the bias-corrected model
parameters {θi}si=1.

I simultaneous clustering of the regressors.

Stage S2. I computation of polyhedral partition of the
regressor space {Xi}si=1 using multi-category
discrimination.

IFAC 2020 9/ 31



Stage S1. Bias-corrected least squares estimates

Given the partition {Xi}si=1, LS estimate of the i-th model is

θLSi =

(
X>i Xi

Ni

)−1 X>i Yi

Ni

Xi ,Yi measured noisy regressors, output of the i-th model.

I It can be proved that LS estimate θLSi is biased!

I Asymptotic bias is caused due to OE structure:

lim
Ni→∞

θLSi = θoi + lim
Ni→∞

B∆(θoi ,Xi ,o)︸ ︷︷ ︸
bias
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Stage S1. Bias-corrected least squares estimates

lim
Ni→∞

θLSi = θoi + lim
Ni→∞

B∆(θoi ,Xi ,o)︸ ︷︷ ︸
bias

Asymptotic bias B∆(θoi ,Xi ,o) does not to converge to 0.

I Thus, the LS estimates are not consistent

lim
Ni→∞

θLSi 6= θoi ,

even for a true partition!
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Stage S1. Bias-corrected least squares estimates

X1

θLS1

X2

θLS2

X3

θLS3

biasbias
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Stage S1. Bias-corrected least squares estimates

Bias-correction: Quantify and remove the bias from LS estimates

θoi = θLSi − B∆(θoi ,Xi ,o)︸ ︷︷ ︸
bias

However, the bias B∆(θoi ,Xi ,o) depends on θoi and can not be
computed.

I Key idea: We define the corrected LS estimate θCLS
i

θCLS
i = θLSi − B∆(θCLS

i ,Xi ,o)
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Stage S1. Bias-corrected least squares estimates

The corrected LS estimate θCLS
i

θCLS
i = θLSi − B∆(θCLS

i ,Xi ,o)

=

(
X>i Xi + X>i ∆Xi

Ni

)−1 X>i Yi

Ni
.

where ∆Xi = Xi ,o − Xi .

However, θCLS
i still can not be computed as it depends on

noise-free regressors Xi ,o.
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Stage S1. Bias-corrected least squares estimates

The corrected LS estimate θCLS
i

θCLS
i =

(
X>i Xi + X>i ∆Xi

Ni

)−1 X>i Yi

Ni
.

Key idea: We replace the term X>i ∆Xi with a bias-eliminating
matrix Ψi

lim
Ni→∞

1

Ni
X>i ∆Xi = lim

Ni→∞

1

Ni
Ψi w.p. 1.

I Ψi can be computed from the available information.

I In our approach, Ψi depends on the noise-variance, which is
assumed to be known.
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Stage S1. Bias-corrected least squares estimates

The bias-corrected estimate θBC
i

θBC
i =

(
X>i Xi + Ψi

Ni

)−1 X>i Yi

Ni
.

with Ψi = −σ2
eNi

[
I 0
0 0

]
.

The bias-corrected estimate θBC
i is consistent!

lim
Ni→∞

θBC
i = θoi , w.p. 1
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Stage S1. Bias-corrected least squares estimates
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Stage S1. Bias-corrected least squares estimates

X1

θBC
1

θLS1
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θBC
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θLS2
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θLS3
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Stage S1. Clustering the regressors

The active mode σ(k) is defined as

σ(k) = i ⇔ xo(k) ∈ Xi ,

The proposed clustering criterion to estimate σ(k)

σ(k)︸︷︷︸
active mode

← arg min
i=1,...,s

λe2
i (k) + ‖x̂(k)− ci‖2

2;

I ei (k) = y(k)−(θBC
i )>

[
x̂(k)

1

]
: prediction error.

I ‖x̂(k)− ci‖2
2 : distance from cluster’s centroid ci
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Stage S1. Iterative parameter estimation and clustering

1. iterate for m = 1, . . . ,M do
1.1 estimate {θmi }si=1 for fixed {σm−1(k)}Nk=1:

θmi =

(
X>i Xi + Ψi

Ni

)−1 X>i Yi

Ni
;

1.2 estimate {σm(k)}Nk=1 for a given {θmi }si=1:

1.2.1 for k = 1, . . . ,N do
σ(k)← argmini=1,...,s λe

2
i (k) + ‖x̂(k)− ci‖2

2

update centroids ci , x̂(k).

2. end for;
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Summary of Stage S1

I The bias-corrected parameters θi of PWA-OE model are
estimated.

I The estimated regressors {x̂(k)}Nk=1 are clustered into s
clusters based on σ(k).

I Each cluster corresponds to a polyhedral partition Xi .

I Next stage: Compute polyhedral partition Xi using linear
multicategory discrimination
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Stage S2: Linear multicategory discrimination

Compute polyhedral partition of space X̂ characterized by the
PWA separator function φ

φ(x̂) = max
i=1,...,s

(
[ x̂> −1 ]

[
ωi

γ i

])
,

X1

{ω1, γ1}

X2

{ω2, γ2}
X3

{ω3, γ3}

x̂

φ
(x̂

)
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Stage S2: Linear multicategory discrimination

The parameters {ωi , γi}si=1 are computed by solving the
optimization problem (Breschi et al., Automatica, 2016)

min
ωi ,γ i

κ

2

s∑
i=1

(
‖ωi‖2

2 + (γ i )2
)

+

s∑
i=1

s∑
j = 1
j 6= i

1

Ni

∥∥∥∥([ Mi −1Ni ]
[
ωj−ωi

γj−γ i

]
+ 1Ni

)
+

∥∥∥∥2

2

Violation of inequalities defining the polytopes are penalized.
κ > 0 ensures the optimization problem is strongly convex.
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Numerical Example

PWA-OE data-generating system

yo(k) =


[−0.4 1 1.5 ] xo(k), if 4yo(k−1)−u(k−1)+10<0,

[ 0.5 −1 −1.5 ]xo(k), if 4yo(k−1)−u(k−1)+10<0,
&5yo(k−1)+u(k−1)−6 ≤ 0,

[−0.3 0.5 −1.7 ] xo(k), if 5yo(k−1)+u(k−1)−6>0,

y(k) = yo(k) + eo(k)

with N = 5000 training samples and SNR = 11.7 dB.

I Identification of PWA model with s = 3, na = nb = 1

I Stage S1 algorithm is run for 20 iterations, with
λ = σ−2

e = 1.56 and random initial guess {σ0(k)}Nk=1.

I Stage S2 is executed with κ = 10−5.
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Numerical Example

Norm of the parameter estimation error LS vs BC estimates.

Mode
∥∥θo − θBC

∥∥ ∥∥θo − θLS∥∥
s = 1 0.0196 0.7818

s = 2 0.0070 0.2091

s = 3 0.0275 0.2156

Mode fit index MF =
(

1
N

∑N
k=1 I(σ(k) = σ?(k))

)
× 100%

BC LS

Training 98.76% 98.50%

Validation 88.40% 77.80%
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Numerical Example

−4 −2 0 2 4
−4
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ŷ(k − 1)
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True (dashed red lines) vs estimated polyhedral partition.
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Numerical Example

320 325 330 335 340 345 350
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Validation dataset: true vs simulated output of the LS model BC model.
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Conclusions

I An iterative batch algorithm for identification of PWA-OE
models is proposed.

I Bias-correction scheme is combined with a clustering
algorithm for parameter estimation and regressors’ clustering.

I The parameters are consistent under suitable assumptions.

I A partition of the regressor space is estimated with high
accuracy by employing multicategory discrimination.

I Future work will be focused on data-driven model structure
selection.
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Thank You
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