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Outline

Contributions
» Realization and identification problem for stochastic LPV-SSA
representations.
> stochastic covariance realization algorithm.
> Identification algorithm

» Simulation case study



Problem formulation

LPV State-Space Affine (LPV-SSA) representations:

x(t +1) = A(p(t))x(t) + K (pe(t))v(t),
y(t) = Cx(t) + Dv(t)

> (x,¥,v) denote state, output, noise processes,

» 1 scheduling signal process taking values in RY.
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> Noise covariance Q; = E [v(t)v' (t)pi(t)?] Vi=1,---,d



Problem formulation

Problem (Realization problem)

For observed process (y, u), find matrices ({A;, Ki}¢_,, C, D) and
processes x, v such that LPV-SSA is a realization of y, i.e.,

y(t) =y(t), t € Z.



Problem formulation

Problem (Realization problem)

For observed process (y, u), find matrices ({A;, Ki}¢_,, C, D) and
processes x, v such that LPV-SSA is a realization of y, l.e.,

y(t) =¥(t), teZ.
Problem (ldentification problem)

Given sample paths {y(t), u(t)}N_,, compute the estimates

{{AN KN QNyd CN DN}, such that as N — 00, the estimated
matrices converge to matrices {{A;, K;, Q;}¢_,, C, D} of true
system, which is a representation of (y, ).



Assumptions

» The scheduling process pu = [1, o, ..., g " is i.id.
E [uf] = pi

T .. . .. )
> [XT VT] satisfies technical conditions: is a Zero Mean
Wide Sense Stationary w.r.t. scheduling Inputs

» The LPV-SSA representation ({A;, Ki}¢_,, C, D, v) satisfies
technical condition: it is stationary for w

Stationary LPV-SSA: stable, additive white noise, statistical
independence conditions for the noise, input and state.



Forward innovation form

» the forward innovation process e
e(t) = y(t) — E/[y(t) | past y, p], E; denotes projection.

MO Te(r)

pasty, u
» The stationary LPV-SSA ({A;, K;}¢_,, C, D, v) in forward

innovation form if v=-eand D = /,, i.e,
d
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Forward innovation form

» the forward innovation process e
e(t) = y(t) — E/[y(t) | past y, p], E; denotes projection.
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» The stationary LPV-SSA ({A;, K;}¢_,, C, D, v) in forward
innovation fordm ifv=eand D =/, ie,
x(t+1) =Y (Ax(t) + Kie(t) mi(t), y(t) = Cx(t) + e(t).
i=1
Theorem

Under suitable assumptions, every LPV-SSA representation can be
transformed to minimal forward innovation form.



Stochastic realization algorithm

» The covariance sequence Wy (i - - - i) is defined as
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constructed from past outputs and scheduling.
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Stochastic realization algorithm: Riccati equations

» The state and noise covariance satisfy Riccati-like equations
Pi=> pi (AijAjT + KijKJ-T)
J

Qi = pE [y(t)y ()uid(t)] - cPiCT
Ki = (B,-\/E,- - A,-P,-CT> Q)



Stochastic realization algorithm: Riccati equations

» The state and noise covariance satisfy Riccati-like equations

P,' = Zp,' (AJ'PJ'AJT + K_,Q_,KJT)
J
Qi = piE [y(e)y" ()u3()] - cP,CT
Ki = (Bi\/E - AiPiCT> Q)71
» The equations can be solved iteratively k =1,2,--- | T
IS’-I<+1 = Zp,' <AAJﬁJkAAJT + R é/’% )
é,-k = piE |y(t)y (e)ud(r)] - CPKCT

(B\F APR(EYT )( -



Stochastic realization algorithm
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Main steps:
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3. Estimate ({A;, Bi}?_,, C) from the Hy,, using Ho-Kalman like
realization algorithm.



Stochastic realization algorithm

Main steps:

1. Construct covariance sequence Wy (it ---ix) = CA Ay -+ A
from the past y and p.

B

ik

2. Construct Hankel matrices Hy, from the covariance sequence
\Uy(l-l e ik).

3. Estimate ({A;, Bi}?_,, C) from the Hy,, using Ho-Kalman like
realization algorithm.

4. Estimate the {K;}¢_, and noise-covariances {P;, Q;}¢_,
solving Riccatti-like equations.
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Hankel matrix Hy, to form a sub-Hankel matrix H, 3.



Stochastic realization algorithm: selections

» The construction of full Hankel matrix Hy, is avoided.

» We use the idea of selections [Cox et. al. '18, Sontag et.al
'70] to select specific entries of the Hankel matrix Hy,

» The selection pair («, 3) is chosen to select the entries of the
Hankel matrix Hy, to form a sub-Hankel matrix H, 3.

» The sub-Hankel matrix H,, 5 is such that,

rank Ho 3 =n



|dentification algorithm

Main idea: estimate the covariance sequences Wy from the

observed sample paths {y(t), u(t)}\V;.

1. Compute empirical covariances from data, approximating
expectations with sample mean
2. Run stochastic realization algorithm using empirical
covariances for Z iterations to get
> Model matrices ({A;, K*}7_,,C)
> Noise and state covariances ({Q7, P79 )
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|dentification algorithm: Consistency

Theorem (Consistency)
The estimates satisfy

by . . ~N.T
i = lim lim K77,
IT—o00 N—oo

AN,' = lim AN,N,
N—oco
C= lim CN
N—oo
and ({/Z\,-, K;, 3, C,%, e) is a minimal stationary LPV-SSA
representation of (y, ) and
E [e(t)(e(t)) T p2(t)] = limzseo limysoo @F, i=1,---d



Numerical Example

The LPV-SSA representation in forward innovation form

04 04 0 0 0 ©
Ai=|0 0 0|,A=1|0 04 04,
0 0 0 0 04 04
—0.036 0
K = 0 ,Ky=10.015|,C=[1 0 0],
1 1.17

» Training data N = 100, 000, validation N, = 100000.

» Scheduling signal process p = [p1 p2] such that pi(t) =1
and po(t) is a white-noise process with ¢/(—1.5,1.5)

» innovation noise e ~ N(0,1), Signal-to-Noise Ratio 4.7 dB



Numerical Example

> the first local model A; = A; — K1 C is not observable, which
is a typical assumption in few PBSID algorithms.

» We run the proposed Algorithm with Z = 50 iterations and
with the following n-selection pair («, 3), with n =3,

a = {(Ev 1)7 (17 1)> (217 1)}a B = {(Ea 1)? (27 1)7 (217 1)}

» Best Fit Rate (BFR) and Variance Accounted For (VAF)

BFR

93.98 %

VAF

99.74 %

» The PBSID [van Wingerden et.al. 2009] approach failed for

this example.




Conclusions

» Computationally efficient algorithm is proposed based on the
idea of selections.

» The proposed algorithm avoids the curse of dimensionality.
» The algorithm is provenly consistent for a class of scheduling
signals.

> An extension of the proposed approach with exogenous inputs
signals is recently presented in LPVS 2019, Eindhoven, The
Netherlands.



Thank you



