Energy Disaggregation using Piecewise Affine Regression and Binary Quadratic Programming

Manas Mejari¹, Vihangkumar V. Naik², Dario Piga³ and Alberto Bemporad²

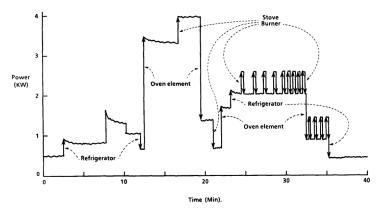
¹University of Lille and École Centrale de Lille, France manas-dilip.mejari@univ-lille.fr

²IMT School for Advanced Studies Lucca, Italy {vihangkumar.naik,alberto.bemporad}@imtlucca.it

³The IDSIA Dalle Molle Institute for Artificial Intelligence, Manno, Switzerland dario.piga@supsi.ch

Energy Disaggregation problem

Estimate the end-use power consumption profiles of individual household appliances using only aggregated power measurements.



Original figure from Hart 1992, first contribution on energy disaggregation problem.

Energy Disaggregation problem

Given an N-length data sequence $\{y(k)\}_{k=1}^N$ of aggregated power signals y(k), estimate power consumption profiles $y_i(k)$ for each appliance

$$y(k) = \sum_{i=1}^{n} y_i(k) + e(k),$$

n denotes number of household appliances,

e(k) is the measurement noise and unmodeled appliances.

We propose a two-stage supervised disaggregation algorithm:

- Stage S1: The power consumption profile of each appliance is described by PieceWise Affine AutoRegressive (PWA-AR) model.
 - The PWA-AR model for each appliance is estimated via the moving-horizon PWA regression algorithm¹

Stage S2: Using the PWA-AR models obtained from stage
 S1, a Binary Quadratic Programming (BQP)
 problem is solved iteratively.

¹using a small set of disaggregated training data

We propose a two-stage supervised disaggregation algorithm:

- Stage S1: The power consumption profile of each appliance is described by PieceWise Affine AutoRegressive (PWA-AR) model.
 - The PWA-AR model for each appliance is estimated via the moving-horizon PWA regression algorithm¹

 Stage S2: Using the PWA-AR models obtained from stage
 S1, a Binary Quadratic Programming (BQP) problem is solved iteratively.

¹using a small set of disaggregated training data

We propose a two-stage supervised disaggregation algorithm:

- Stage S1: The power consumption profile of each appliance is described by PieceWise Affine AutoRegressive (PWA-AR) model.
 - The PWA-AR model for each appliance is estimated via the moving-horizon PWA regression algorithm¹

Stage S2: Using the PWA-AR models obtained from stage
 S1, a Binary Quadratic Programming (BQP)
 problem is solved iteratively.

¹using a small set of disaggregated training data

We propose a two-stage supervised disaggregation algorithm:

- Stage S1: The power consumption profile of each appliance is described by PieceWise Affine AutoRegressive (PWA-AR) model.
 - The PWA-AR model for each appliance is estimated via the moving-horizon PWA regression algorithm¹

Stage S2: Using the PWA-AR models obtained from stage
 S1, a Binary Quadratic Programming (BQP)
 problem is solved iteratively.

¹using a small set of disaggregated training data

We propose a two-stage supervised disaggregation algorithm:

- Stage S1: The power consumption profile of each appliance is described by PieceWise Affine AutoRegressive (PWA-AR) model.
 - The PWA-AR model for each appliance is estimated via the moving-horizon PWA regression algorithm¹
- Stage S2: Using the PWA-AR models obtained from stage
 S1, a Binary Quadratic Programming (BQP) problem is solved iteratively.
 - The BQP solution determines the active appliances contributing to the instantaneous total power.

¹using a small set of disaggregated training data

The power $y_i(k)$ consumed by the *i*-th appliance at time k is modeled by

$$y_i(k) = \begin{cases} \Theta_{i,1}^\top \begin{bmatrix} 1 \\ x_i(k) \end{bmatrix} & \text{if } \delta_{i,1}(k) = 1, \\ \vdots \\ \Theta_{i,s}^\top \begin{bmatrix} 1 \\ x_i(k) \end{bmatrix} & \text{if } \delta_{i,s}(k) = 1, \end{cases}$$

 $\delta_{i,j}(k) \in \{0,1\}$ operating mode, $x_i(k)$ regressor vector

$$x_i(k) = [y_i(k-1), \dots, y_i(k-n_a)]^{\top}$$

Estimation of the PWA-AR appliance model consists of:

- 1. selecting the number of modes s
- 2. estimating the model parameter matrices $\Theta_{i,j}$
- 3. estimating the active operating mode $\delta_{i,j}(k)$

The power $y_i(k)$ consumed by the *i*-th appliance at time k is modeled by

$$y_i(k) = \begin{cases} \Theta_{i,1}^\top \begin{bmatrix} 1 \\ x_i(k) \end{bmatrix} & \text{if } \delta_{i,1}(k) = 1, \\ \vdots \\ \Theta_{i,s}^\top \begin{bmatrix} 1 \\ x_i(k) \end{bmatrix} & \text{if } \delta_{i,s}(k) = 1, \end{cases}$$

 $\delta_{i,j}(k) \in \{0,1\}$ operating mode, $x_i(k)$ regressor vector

$$x_i(k) = [y_i(k-1), \dots, y_i(k-n_a)]^{\top}$$

Estimation of the PWA-AR appliance model consists of:

1. selecting the number of modes s

2. estimating the model parameter matrices $\Theta_{i,j}$

3. estimating the active operating mode $\delta_{i,j}(k)$

The power $y_i(k)$ consumed by the *i*-th appliance at time k is modeled by

$$y_i(k) = \begin{cases} \Theta_{i,1}^\top \begin{bmatrix} 1\\ x_i(k) \end{bmatrix} & \text{if } \delta_{i,1}(k) = 1, \\ \vdots \\ \Theta_{i,s}^\top \begin{bmatrix} 1\\ x_i(k) \end{bmatrix} & \text{if } \delta_{i,s}(k) = 1, \end{cases}$$

 $\delta_{i,j}(k) \in \{0,1\}$ operating mode, $x_i(k)$ regressor vector

$$x_i(k) = [y_i(k-1), \dots, y_i(k-n_a)]^{\top}$$

Estimation of the PWA-AR appliance model consists of:

- 1. selecting the number of modes s
- 2. estimating the model parameter matrices $\Theta_{i,j}$

3. estimating the active operating mode $\delta_{i,j}(k)$

The power $y_i(k)$ consumed by the *i*-th appliance at time k is modeled by

$$y_i(k) = \begin{cases} \Theta_{i,1}^\top \begin{bmatrix} 1 \\ x_i(k) \end{bmatrix} & \text{if } \delta_{i,1}(k) = 1, \\ \vdots \\ \Theta_{i,s}^\top \begin{bmatrix} 1 \\ x_i(k) \end{bmatrix} & \text{if } \delta_{i,s}(k) = 1, \end{cases}$$

 $\delta_{i,j}(k) \in \{0,1\}$ operating mode, $x_i(k)$ regressor vector

$$x_i(k) = [y_i(k-1), \dots, y_i(k-n_a)]^{\top}$$

Estimation of the PWA-AR appliance model consists of:

- 1. selecting the number of modes s
- 2. estimating the model parameter matrices $\Theta_{i,j}$
- 3. estimating the active operating mode $\delta_{i,j}(k)$

The power $y_i(k)$ consumed by the *i*-th appliance at time k is modeled by

$$y_i(k) = \begin{cases} \Theta_{i,1}^\top \begin{bmatrix} 1\\ x_i(k) \end{bmatrix} & \text{if } \delta_{i,1}(k) = 1, \\ \vdots \\ \Theta_{i,s}^\top \begin{bmatrix} 1\\ x_i(k) \end{bmatrix} & \text{if } \delta_{i,s}(k) = 1, \end{cases}$$

 $\delta_{i,j}(k) \in \{0,1\}$ operating mode, $x_i(k)$ regressor vector

$$x_i(k) = [y_i(k-1), \dots, y_i(k-n_a)]^{\top}$$

Estimation of the PWA-AR appliance model consists of:

- 1. selecting the number of modes s (via cross-validation)
- 2. estimating the model parameter matrices $\Theta_{i,j}$
- 3. estimating the active operating mode $\delta_{i,j}(k)$

- ► At each time sample k, a moving-horizon window of length N_p containing regressor/output pairs {x_i(k), y_i(k)} from time k N_p + 1 to time k is considered.
- A mixed-integer programming problem is solved to simultaneously estimate:
 - 1. the model parameters $\Theta_{i,j}$
 - 2. the active mode $\sigma_i(k) \in \{1, \dots, s\}$

 $\sigma_i(k) = j^* \Leftrightarrow \delta_{i,j^*}(k) = 1$

- At each time sample k, a moving-horizon window of length N_p containing regressor/output pairs {x_i(k), y_i(k)} from time k N_p + 1 to time k is considered.
- A mixed-integer programming problem is solved to simultaneously estimate:

1. the model parameters
$$\Theta_{i,j}$$

2. the active mode $\sigma_i(k) \in \{1, \dots, s\}$
 $\sigma_i(k) = j^* \Leftrightarrow \delta_{i,j^*}(k) = 1$

- ► At each time sample k, a moving-horizon window of length N_p containing regressor/output pairs {x_i(k), y_i(k)} from time k N_p + 1 to time k is considered.
- A mixed-integer programming problem is solved to simultaneously estimate:

1. the model parameters $\Theta_{i,j}$

2. the active mode
$$\sigma_i(k) \in \{1, \dots, s\}$$

 $\sigma_i(k) = j^* \Leftrightarrow \delta_{i,j^*}(k) = 1$

- At each time sample k, a moving-horizon window of length N_p containing regressor/output pairs {x_i(k), y_i(k)} from time k N_p + 1 to time k is considered.
- A mixed-integer programming problem is solved to simultaneously estimate:
 - 1. the model parameters $\Theta_{i,j}$
 - 2. the active mode $\sigma_i(k) \in \{1, \ldots, s\}$

 $\sigma_i(k) = j^* \Leftrightarrow \delta_{i,j^*}(k) = 1$

- At each time sample k, a moving-horizon window of length N_p containing regressor/output pairs {x_i(k), y_i(k)} from time k N_p + 1 to time k is considered.
- A mixed-integer programming problem is solved to simultaneously estimate:
 - 1. the model parameters $\Theta_{i,j}$
 - 2. the active mode $\sigma_i(k) \in \{1, \dots, s\}$ $\sigma_i(k) = j^* \Leftrightarrow \delta_{i,j^*}(k) = 1$
- The training data samples {x_i(k), y_i(k)} are processed iteratively by shifting the horizon window.

At time k, we solve,

$$\min_{\substack{\Theta_{i,j}, \delta_{i,j}(k-t) \\ \text{s.t.} \delta_{i,j}(k-t) \in \{0,1\}, \sum_{j=1}^{s} \sum_{t=0}^{N_p-1} \left\| \left(y_i(k-t) - \Theta_{i,j}^{\mathsf{T}} \begin{bmatrix} 1\\ x_i(k-t) \end{bmatrix} \right) \delta_{i,j}(k-t) \right\|_2^2$$

Fitting error term optimized over N_p horizon samples

$$\bullet \ \delta_{i,j}(k) \text{ indicates active mode at time } k$$
 i.e.,
$$\delta_{i,j}(k) = 1 \Rightarrow \sigma_i(k) = j$$

Computes both model parameters Θ_{i,j} and active modes σ_i(k) at k simultaneously

At time k, we solve,

$$\min_{\substack{\Theta_{i,j}, \delta_{i,j}(k-t) \in \{0,1\}, \sum_{j=1}^{s} \sum_{t=0}^{N_p-1} \left\| \left(y_i(k-t) - \Theta_{i,j}^{\mathsf{T}} \begin{bmatrix} 1\\ x_i(k-t) \end{bmatrix} \right) \delta_{i,j}(k-t) \right\|_2^2$$
s.t. $\delta_{i,j}(k-t) \in \{0,1\}, \sum_{j=1}^{s} \delta_{i,j}(k-t) = 1, t = 0, \dots, N_p-1.$

- Fitting error term optimized over N_p horizon samples
- $\ \, \bullet \ \, \delta_{i,j}(k) \ \, \text{indicates active mode at time } k, \\ \text{i.e., } \ \, \overline{\delta_{i,j}(k)=1 \Rightarrow \sigma_i(k)=j}$
- \blacktriangleright Computes both model parameters $\Theta_{i,j}$ and active modes $\sigma_i(k)$ at k simultaneously

At time k, we solve,

$$\min_{\substack{\Theta_{i,j}, \delta_{i,j}(k-t) \\ \text{s.t.} \delta_{i,j}(k-t) \in \{0,1\}, \sum_{j=1}^{s} \sum_{t=0}^{N_p-1} \left\| \left(y_i(k-t) - \Theta_{i,j}^{\mathsf{T}} \begin{bmatrix} 1\\ x_i(k-t) \end{bmatrix} \right) \delta_{i,j}(k-t) \right\|_2^2$$

Fitting error term optimized over N_p horizon samples

$$\ \, \bullet \ \, \delta_{i,j}(k) \ \, \text{indicates active mode at time } k, \\ \text{i.e., } \ \, \overline{\delta_{i,j}(k)=1 \Rightarrow \sigma_i(k)=j}$$

Computes both model parameters Θ_{i,j} and active modes σ_i(k) at k simultaneously

At time k, we solve,

$$\min_{\substack{\Theta_{i,j}, \delta_{i,j}(k-t) \\ \text{s.t.} \delta_{i,j}(k-t) \in \{0,1\}, \sum_{j=1}^{s} \sum_{t=0}^{N_p-1} \left\| \left(y_i(k-t) - \Theta_{i,j}^{\top} \begin{bmatrix} 1 \\ x_i(k-t) \end{bmatrix} \right) \delta_{i,j}(k-t) \right\|_2^2$$

Fitting error term optimized over N_p horizon samples

$$\ \, \bullet \ \, \delta_{i,j}(k) \ \, \text{indicates active mode at time } k, \\ \text{i.e., } \ \, \overline{\delta_{i,j}(k)=1 \Rightarrow \sigma_i(k)=j}$$

Computes both model parameters Θ_{i,j} and active modes σ_i(k) at k simultaneously

$$\begin{split} \min_{\Theta_{i,j}, \delta_{i,j}(k-t)} &\sum_{j=1}^{s} \sum_{t=0}^{N_p-1} \left\| \left(y_i(k-t) - \Theta_{i,j}^\top \begin{bmatrix} 1\\ x_i(k-t) \end{bmatrix} \right) \delta_{i,j}(k-t) \right\|_2^2 \\ &+ \left\| \sum_{t=1}^{k-N_p} \left\| y_i(t) - \Theta_{i,\sigma(t)}^\top \begin{bmatrix} 1\\ x_i(t) \end{bmatrix} \right\|^2 \right\| \text{ regularization on } \Theta_{i,j} \\ \text{s.t. } \delta_i(k-t) \in \{0,1\}, \ \sum_{i=1}^s \delta_i(k-t) = 1, \ t = 0, \dots, T-1. \end{split}$$

takes into account the time history, outside the considered time window i.e. from time 1 to time k - N_p

Fixed estimates $\{\sigma_i(t)\}_{t=1}^{k-N_p}$ are used, to refine the estimates of the model parameters $\Theta_{i,j}$

$$\begin{split} \min_{\Theta_{i,j}, \delta_{i,j}(k-t)} & \sum_{j=1}^{s} \sum_{t=0}^{N_p-1} \left\| \left(y_i(k-t) - \Theta_{i,j}^\top \begin{bmatrix} 1\\ x_i(k-t) \end{bmatrix} \right) \delta_{i,j}(k-t) \right\|_2^2 \\ & + \left\| \sum_{t=1}^{k-N_p} \left\| y_i(t) - \Theta_{i,\sigma(t)}^\top \begin{bmatrix} 1\\ x_i(t) \end{bmatrix} \right\|^2 \right\| \text{ regularization on } \Theta_{i,j} \\ \text{s.t. } \delta_i(k-t) \in \{0,1\}, \ \sum_{i=1}^s \delta_i(k-t) = 1, \ t = 0, \dots, T-1. \end{split}$$

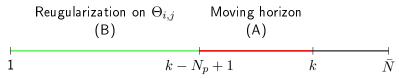
takes into account the time history, outside the considered time window i.e. from time 1 to time k - Np

Fixed estimates {σ_i(t)}^{k−N_p}_{t=1} are used, to refine the estimates of the model parameters Θ_{i,j}

$$\begin{split} \min_{\Theta_{i,j}, \delta_{i,j}(k-t)} & \sum_{j=1}^{s} \sum_{t=0}^{N_p-1} \left\| \left(y_i(k-t) - \Theta_{i,j}^\top \begin{bmatrix} 1\\ x_i(k-t) \end{bmatrix} \right) \delta_{i,j}(k-t) \right\|_2^2 \\ & + \left\| \sum_{t=1}^{k-N_p} \left\| y_i(t) - \Theta_{i,\sigma(t)}^\top \begin{bmatrix} 1\\ x_i(t) \end{bmatrix} \right\|^2 \right\| \text{ regularization on } \Theta_{i,j} \\ \text{s.t. } \delta_i(k-t) \in \{0,1\}, \ \sum_{i=1}^s \delta_i(k-t) = 1, \ t = 0, \dots, T-1. \end{split}$$

takes into account the time history, outside the considered time window i.e. from time 1 to time k - Np

Fixed estimates $\{\sigma_i(t)\}_{t=1}^{k-N_p}$ are used, to refine the estimates of the model parameters $\Theta_{i,j}$

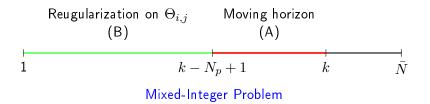


$$\min_{\Theta_{i,j}, \delta_{i,j}(k-t)} \sum_{j=1}^{s} \sum_{t=0}^{N_p-1} \left\| \left(y_i(k-t) - \Theta_{i,j}^{\top} \begin{bmatrix} 1 \\ x_i(k-t) \end{bmatrix} \right) \delta_{i,j}(k-t) \right\|_2^2$$
(A)

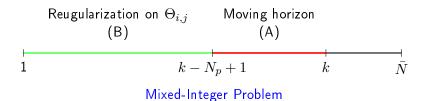
$$+\sum_{t=1}^{k-N_p} \left\| y_i(t) - \Theta_{i,\sigma(t)}^{\top} \begin{bmatrix} 1\\ x_i(t) \end{bmatrix} \right\|_2^2 \tag{B}$$

s.t.
$$\delta_{i,j}(k-t) \in \{0,1\}, \sum_{j=1}^{s} \delta_{i,j}(k-t) = 1, t = 0, \dots, N_p - 1.$$

Reugularization on
$$\Theta_{i,j}$$
 Moving horizon
(B) (A)
1 $k - N_p + 1$ k \bar{N}
Mixed-Integer Problem
 $\Theta_{i,j}, \ \delta_{i,j}(k-t) \sum_{j=1}^{s} \sum_{t=0}^{N_p-1} \left\| \left(y_i(k-t) - \Theta_{i,j}^\top \begin{bmatrix} 1\\ x_i(k-t) \end{bmatrix} \right) \delta_{i,j}(k-t) \right\|_2^2$
(A)
 $+ \sum_{t=1}^{k-N_p} \left\| y_i(t) - \Theta_{i,\sigma(t)}^\top \begin{bmatrix} 1\\ x_i(t) \end{bmatrix} \right\|_2^2$
(B)
s.t. $\delta_{i,j}(k-t) \in \{0,1\}, \ \sum_{j=1}^s \delta_{i,j}(k-t) = 1, \ t = 0, \dots, N_p-1.$

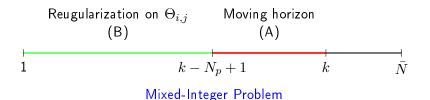


- Only the active mode $\sigma(k)$ at time k is kept
- the N_p -length time window is shifted forward to estimate the next mode $\sigma(k+1)$ solving the MIQP problem
- ▶ the signature of the *i*-th appliance is captured by the estimated model parameters ⊖_{*i*,*j*} for all modes *j* = 1,...,*s*



- Only the active mode $\sigma(k)$ at time k is kept
- the N_p-length time window is shifted forward to estimate the next mode σ(k + 1) solving the MIQP problem

▶ the signature of the *i*-th appliance is captured by the estimated model parameters Θ_{i,j} for all modes j = 1,...,s



- Only the active mode $\sigma(k)$ at time k is kept
- the N_p-length time window is shifted forward to estimate the next mode σ(k + 1) solving the MIQP problem
- ► the signature of the *i*-th appliance is captured by the estimated model parameters $\Theta_{i,j}$ for all modes $j = 1, \ldots, s$

- Energy disaggregation problem reduces to determining the operating mode δ_{i,j}(k) of each PWA-AR appliance model.
- We solve the following Binary Quadratic Program (BQP)

$$\min_{\substack{\{\delta_{i,j}(k)\}_{i,j=1}^{n,s} \\ \text{s.t. } \delta_{i,j}(k) \in \{0,1\}, \ \sum_{j=1}^{s} \delta_{i,j}(k) = 1,} \left\| y(k) - \sum_{i=1}^{n} \sum_{j=1}^{s} \Theta_{i,j}^{\top} \begin{bmatrix} 1\\ \hat{x}_{i}(k) \end{bmatrix} \delta_{i,j}(k) \right\|_{2}^{2},$$

$$\min_{\substack{\{\delta_{i,j}(k)\}_{i,j=1}^{n,s} \\ \text{s.t. } \delta_{i,j}(k) \in \{0,1\}, \ \sum_{j=1}^{s} \delta_{i,j}(k) = 1,} \left\| y(k) - \sum_{i=1}^{n} \sum_{j=1}^{s} \Theta_{i,j}^{\top} \left[\frac{1}{\hat{x}_{i}(k)} \right] \delta_{i,j}(k) \right\|_{2}^{2},$$

- At each time instance k the BQP is solved iteratively using an estimate x̂_i(k) of the regressor obtained from the previous iterations.
- the active operating mode j* of each appliance is determined by the solution of the BQP namely

$$j^*: \delta_{i,j^*}(k) = 1.$$

$$\min_{\substack{\{\delta_{i,j}(k)\}_{i,j=1}^{n,s} \\ \text{s.t. } \delta_{i,j}(k) \in \{0,1\}, \ \sum_{j=1}^{s} \delta_{i,j}(k) = 1,} \left\| y(k) - \sum_{i=1}^{n} \sum_{j=1}^{s} \Theta_{i,j}^{\top} \left[\frac{1}{\hat{x}_{i}(k)} \right] \delta_{i,j}(k) \right\|_{2}^{2},$$

- At each time instance k the BQP is solved iteratively using an estimate x̂_i(k) of the regressor obtained from the previous iterations.
- the active operating mode j* of each appliance is determined by the solution of the BQP namely

$$j^*: \delta_{i,j^*}(k) = 1.$$

$$\min_{\substack{\{\delta_{i,j}(k)\}_{i,j=1}^{n,s} \\ \text{s.t. } \delta_{i,j}(k) \in \{0,1\}, \ \sum_{j=1}^{s} \delta_{i,j}(k) = 1,} \left\| y(k) - \sum_{i=1}^{n} \sum_{j=1}^{s} \Theta_{i,j}^{\top} \left[\frac{1}{\hat{x}_{i}(k)} \right] \delta_{i,j}(k) \right\|_{2}^{2},$$

The power of each individual appliance is thus given by

$$\hat{y}_i(k) = \Theta_{i,j^*}^{\top} \begin{bmatrix} 1\\ \hat{x}_i(k) \end{bmatrix},$$

which is used to construct the regressor $\hat{x}_i(k+1)$.

CDC 2018, Miami Beach, USA 11

Application to Real Data

Test on a benchmark AMPds dataset of house located in Canada.

- We consider the aggregate power consumption by 1) fridge; 2) dish washer; 3) heat pump; 4) clothes dryer.
- ► The aggregated power is corrupted by a fictitious white noise $e(k) \in \mathcal{N}(0, \sigma_{e}^{2})$ where $\sigma_{e} = 4$ W.
- Stage S1: PWA-AR models of each appliance are tranined using only 500 min data of the day 19.
- Stage S2: The power measurements of one month are disaggregated by solving the binary quadratic program.

Application to Real Data

 Test on a benchmark AMPds dataset of house located in Canada.

- We consider the aggregate power consumption by 1) fridge; 2) dish washer; 3) heat pump; 4) clothes dryer.
- ► The aggregated power is corrupted by a fictitious white noise $e(k) \in \mathcal{N}(0, \sigma_{e}^{2})$ where $\sigma_{e} = 4$ W.
- Stage S1: PWA-AR models of each appliance are tranined using only 500 min data of the day 19.
- Stage S2: The power measurements of one month are disaggregated by solving the binary quadratic program.

- Test on a benchmark AMPds dataset of house located in Canada.
- We consider the aggregate power consumption by 1) fridge; 2) dish washer; 3) heat pump; 4) clothes dryer.
- ► The aggregated power is corrupted by a fictitious white noise $e(k) \in \mathcal{N}(0, \sigma_{e}^{2})$ where $\sigma_{e} = 4$ W.
- Stage S1: PWA-AR models of each appliance are tranined using only 500 min data of the day 19.
- Stage S2: The power measurements of one month are disaggregated by solving the binary quadratic program.

- Test on a benchmark AMPds dataset of house located in Canada.
- We consider the aggregate power consumption by 1) fridge; 2) dish washer; 3) heat pump; 4) clothes dryer.
- ► The aggregated power is corrupted by a fictitious white noise $e(k) \in \mathcal{N}(0, \sigma_{e}^{2})$ where $\sigma_{e} = 4$ W.
- Stage S1: PWA-AR models of each appliance are tranined using only 500 min data of the day 19.
- Stage S2: The power measurements of one month are disaggregated by solving the binary quadratic program.

- Test on a benchmark AMPds dataset of house located in Canada.
- We consider the aggregate power consumption by 1) fridge; 2) dish washer; 3) heat pump; 4) clothes dryer.
- ► The aggregated power is corrupted by a fictitious white noise $e(k) \in \mathcal{N}(0, \sigma_{e}^{2})$ where $\sigma_{e} = 4$ W.
- Stage S1: PWA-AR models of each appliance are tranined using only 500 min data of the day 19.
- Stage S2: The power measurements of one month are disaggregated by solving the binary quadratic program.

Stage S1: Supervised traning phase.

- ▶ PWA-AR models with s = 3 and $n_a = 2$ are estimated.
- The moving-horizon mixed-integer quadratic programming problem is solved with horizon length $N_p = 5$
- ▶ The average computation time is 90 ms using GUROBI.
- For comparison with PWA-AR models, we also consider static device models for energy disaggregation:
 - a. fridge: $[\Theta_{1,1} \ \Theta_{1,2} \ \Theta_{1,3}] = [0 \ 128 \ 200] W;$
 - b. dish washer: $[\Theta_{2,1} \ \Theta_{2,2} \ \Theta_{2,3}] = [0 \ 120 \ 800] W$
 - c. heat pump: $[\Theta_{3,1} \ \Theta_{3,2} \ \Theta_{3,3}] = [0 \ 39 \ 1900] W;$
 - d. clothes dryer: $[\Theta_{4,1} \ \Theta_{4,2} \ \Theta_{4,3}] = [0 \ 260 \ 4700] W$

- Stage S1: Supervised traning phase.
- ▶ PWA-AR models with s = 3 and $n_a = 2$ are estimated.
- The moving-horizon mixed-integer quadratic programming problem is solved with horizon length $N_p = 5$
- The average computation time is 90 ms using GUROBI.
- For comparison with PWA-AR models, we also consider static device models for energy disaggregation:
 - a. fridge: $[\Theta_{1,1} \ \Theta_{1,2} \ \Theta_{1,3}] = [0 \ 128 \ 200] W;$
 - b. dish washer: $[\Theta_{2,1} \ \Theta_{2,2} \ \Theta_{2,3}] = [0 \ 120 \ 800] \text{ W}$
 - c. heat pump: $[\Theta_{3,1} \ \Theta_{3,2} \ \Theta_{3,3}] = [0 \ 39 \ 1900]$ W;
 - d. clothes dryer: $[\Theta_{4,1} \ \Theta_{4,2} \ \Theta_{4,3}] = [0 \ 260 \ 4700] W$

- Stage S1: Supervised traning phase.
- ▶ PWA-AR models with s = 3 and $n_a = 2$ are estimated.
- > The moving-horizon mixed-integer quadratic programming problem is solved with horizon length $N_p = 5$
- The average computation time is 90 ms using GUROBI.
- For comparison with PWA-AR models, we also consider static device models for energy disaggregation:
 - a. fridge: $[\Theta_{1,1} \ \Theta_{1,2} \ \Theta_{1,3}] = [0 \ 128 \ 200] \ W;$
 - b. dish washer: $[\Theta_{2,1} \ \Theta_{2,2} \ \Theta_{2,3}] = [0 \ 120 \ 800] W$
 - c. heat pump: $[\Theta_{3,1} \ \Theta_{3,2} \ \Theta_{3,3}] = [0 \ 39 \ 1900] W;$
 - d. clothes dryer: $[\Theta_{4,1} \ \Theta_{4,2} \ \Theta_{4,3}] = [0 \ 260 \ 4700] W$

- Stage S1: Supervised traning phase.
- ▶ PWA-AR models with s = 3 and $n_a = 2$ are estimated.
- > The moving-horizon mixed-integer quadratic programming problem is solved with horizon length $N_p = 5$
- The average computation time is 90 ms using GUROBI.
- For comparison with PWA-AR models, we also consider static device models for energy disaggregation:
 - a. fridge: $[\Theta_{1,1} \ \Theta_{1,2} \ \Theta_{1,3}] = [0 \ 128 \ 200] W;$
 - b. dish washer: $[\Theta_{2,1} \ \Theta_{2,2} \ \Theta_{2,3}] = [0 \ 120 \ 800]$ W;
 - c. heat pump: $[\Theta_{3,1} \ \Theta_{3,2} \ \Theta_{3,3}] = [0 \ 39 \ 1900]$ W;
 - d. clothes dryer: $[\Theta_{4,1} \ \Theta_{4,2} \ \Theta_{4,3}] = [0 \ 260 \ 4700] \ W.$

- **Stage S2**: Energy Disaggregation.
- Once PWA-AR models are estimated, *Binary Quadratic Program* is solved to disaggregated the power measurements of one month.
- The average CPU time taken is 8 ms using GUROBI.
 The quality of the energy disaggregation results is assessed via:
 - a. Energy Fraction Index (EFI)
 - b. Relative Square Error (RSE) and R^2 coefficient
 - c. Total Energy Correctly Assigned (TECA)

- **Stage S2**: Energy Disaggregation.
- Once PWA-AR models are estimated, *Binary Quadratic Program* is solved to disaggregated the power measurements of one month.

The average CPU time taken is 8 ms using GUROBI.
 The quality of the energy disaggregation results is assessed via:

a. Energy Fraction Index (EFI)

- b. Relative Square Error (RSE) and R^2 coefficient
- c. Total Energy Correctly Assigned (TECA)

- **Stage S2**: Energy Disaggregation.
- Once PWA-AR models are estimated, *Binary Quadratic Program* is solved to disaggregated the power measurements of one month.
- The average CPU time taken is 8 ms using GUROBI.
- The quality of the energy disaggregation results is assessed via:
 - a. Energy Fraction Index (EFI)
 - b. Relative Square Error (RSE) and R^2 coefficient
 - c. Total Energy Correctly Assigned (TECA)

Energy Fraction Index (EFI)

$$\hat{h}_{i} = \frac{\sum_{k=1}^{N} \hat{y}_{i}(k)}{\sum_{i=1}^{n} \sum_{k=1}^{N} \hat{y}_{i}(k)}$$

quantifies the estimated fraction of total energy consumed by the i-th appliance.

	PWA-AR models	static models	ground truth
	\hat{h}_i	\hat{h}_i	h_i
Fridge	19.6 %	14.9 %	21.3 %
Dish washer	6.8 %	11.4 %	5.1 %
Heat pump	41.6 %	42.0 %	42.3 %
Clothes dryer	31.9 %	31.6 %	31.3 %

Relative Square Error (RSE) and R^2 coefficient

$$RSE_{i} = \frac{\sum_{k=1}^{N} (y_{i}(k) - \hat{y}_{i}(k))^{2}}{\sum_{k=1}^{N} y_{i}^{2}(k)}$$
$$R_{i}^{2} = 1 - \frac{\sum_{k=1}^{N} (y_{i}(k) - \hat{y}_{i}(k))^{2}}{\sum_{k=1}^{N} (y_{i}(k) - \bar{y}_{i})^{2}}$$

 RSE_i and R_i^2 measure the match between the actual and the estimated power profiles over time.

	PWA-AR models		static models	
	RSE_i	R_i^2	RSE_i	R_i^2
Fridge	15.5 %	76.5 %	35.9 %	45.5 %
Dish washer	12.4 %	87.3 %	38.0 %	61.4 %
Heat pump	0.6 %	99.3 %	4.0 %	95.6 %
Clothes dryer	0.1 %	99.9 %	0.3 %	99.7 %

16

Mejari, Naik, Piga, Bemporad

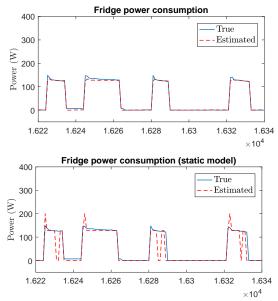
Total Energy Correctly Assigned (TECA)

TECA = 1 -
$$\frac{\sum_{k=1}^{N} \sum_{i=1}^{n} |\hat{y}_i(k) - y_i(k)|}{2\sum_{k=1}^{N} y(k)}$$
,

quantifies the percentage of energy correctly classified.

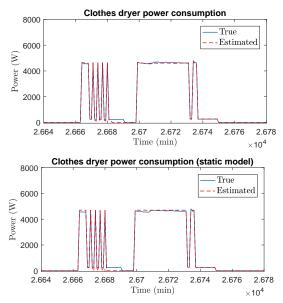
	PWA-AR models	static models
TECA	95.3 %	89.4 %

Application to Energy Disaggregation



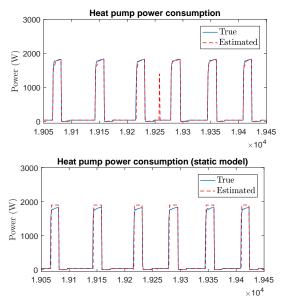
Mejari, Naik, Piga, Bemporad

Application to Energy Disaggregation



Mejari, Naik, Piga, Bemporad

Application to Energy Disaggregation



Conclusions

 A two-stage supervised algorithm for energy disaggregation is proposed.

- The dynamic PWA-AR modeling of the power profiles of individual appliances leads to better energy disaggregation results compared to the same approach relying on static models.
- The proposed method is computationally efficient as the appliance models can be estimated off-line only once, while energy disaggregation is performed online with low computational complexity.

Conclusions

- A two-stage supervised algorithm for energy disaggregation is proposed.
- The dynamic PWA-AR modeling of the power profiles of individual appliances leads to better energy disaggregation results compared to the same approach relying on static models.
- The proposed method is computationally efficient as the appliance models can be estimated off-line only once, while energy disaggregation is performed online with low computational complexity.

Conclusions

- A two-stage supervised algorithm for energy disaggregation is proposed.
- The dynamic PWA-AR modeling of the power profiles of individual appliances leads to better energy disaggregation results compared to the same approach relying on static models.
- The proposed method is computationally efficient as the appliance models can be estimated off-line only once, while energy disaggregation is performed online with low computational complexity.

Thank You