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Energy Disaggregation problem

Estimate the end-use power consumption pro�les of individual
household appliances using only aggregated power measurements.

Original �gure from Hart 1992, �rst contribution on energy
disaggregation problem.
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Energy Disaggregation problem

Given an N -length data sequence {y(k)}Nk=1 of aggregated power
signals y(k), estimate power consumption pro�les yi(k) for each
appliance

y(k) =

n∑
i=1

yi(k) + e(k),

n denotes number of household appliances,
e(k) is the measurement noise and unmodeled appliances.
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Energy Disaggregation Algorithm

We propose a two-stage supervised disaggregation algorithm:

Stage S1: I The power consumption pro�le of each appliance
is described by PieceWise A�ne AutoRegressive
(PWA-AR) model.

I The PWA-AR model for each appliance is
estimated via the moving-horizon PWA
regression algorithm1

Stage S2: I Using the PWA-AR models obtained from stage
S1, a Binary Quadratic Programming (BQP)
problem is solved iteratively.

I The BQP solution determines the active
appliances contributing to the instantaneous
total power.

1using a small set of disaggregated training data
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Stage S1: Training appliance models

The power yi(k) consumed by the i-th appliance at time k is
modeled by

yi(k) =


Θ>i,1

[
1

xi(k)

]
if δi,1(k) = 1,

...

Θ>i,s

[
1

xi(k)

]
if δi,s(k) = 1,

δi,j(k) ∈ {0, 1} operating mode, xi(k) regressor vector

xi(k) = [yi(k − 1), . . . , yi(k − na)]>

Estimation of the PWA-AR appliance model consists of:

1. selecting the number of modes s

2. estimating the model parameter matrices Θi,j

3. estimating the active operating mode δi,j(k)

Mejari, Naik, Piga, Bemporad CDC 2018, Miami Beach, USA 5



Stage S1: Training appliance models

The power yi(k) consumed by the i-th appliance at time k is
modeled by

yi(k) =


Θ>i,1

[
1

xi(k)

]
if δi,1(k) = 1,

...

Θ>i,s

[
1

xi(k)

]
if δi,s(k) = 1,

δi,j(k) ∈ {0, 1} operating mode, xi(k) regressor vector

xi(k) = [yi(k − 1), . . . , yi(k − na)]>

Estimation of the PWA-AR appliance model consists of:

1. selecting the number of modes s

2. estimating the model parameter matrices Θi,j

3. estimating the active operating mode δi,j(k)

Mejari, Naik, Piga, Bemporad CDC 2018, Miami Beach, USA 5



Stage S1: Training appliance models

The power yi(k) consumed by the i-th appliance at time k is
modeled by

yi(k) =


Θ>i,1

[
1

xi(k)

]
if δi,1(k) = 1,

...

Θ>i,s

[
1

xi(k)

]
if δi,s(k) = 1,

δi,j(k) ∈ {0, 1} operating mode, xi(k) regressor vector

xi(k) = [yi(k − 1), . . . , yi(k − na)]>

Estimation of the PWA-AR appliance model consists of:

1. selecting the number of modes s

2. estimating the model parameter matrices Θi,j

3. estimating the active operating mode δi,j(k)

Mejari, Naik, Piga, Bemporad CDC 2018, Miami Beach, USA 5



Stage S1: Training appliance models

The power yi(k) consumed by the i-th appliance at time k is
modeled by

yi(k) =


Θ>i,1

[
1

xi(k)

]
if δi,1(k) = 1,

...

Θ>i,s

[
1

xi(k)

]
if δi,s(k) = 1,

δi,j(k) ∈ {0, 1} operating mode, xi(k) regressor vector

xi(k) = [yi(k − 1), . . . , yi(k − na)]>

Estimation of the PWA-AR appliance model consists of:

1. selecting the number of modes s

2. estimating the model parameter matrices Θi,j

3. estimating the active operating mode δi,j(k)

Mejari, Naik, Piga, Bemporad CDC 2018, Miami Beach, USA 5



Stage S1: Training appliance models

The power yi(k) consumed by the i-th appliance at time k is
modeled by

yi(k) =


Θ>i,1

[
1

xi(k)

]
if δi,1(k) = 1,

...

Θ>i,s

[
1

xi(k)

]
if δi,s(k) = 1,

δi,j(k) ∈ {0, 1} operating mode, xi(k) regressor vector
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Estimation of the PWA-AR appliance model consists of:

1. selecting the number of modes s (via cross-validation)

2. estimating the model parameter matrices Θi,j

3. estimating the active operating mode δi,j(k)
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Stage S1: Training appliance models

I At each time sample k, a moving-horizon window of length Np

containing regressor/output pairs {xi(k), yi(k)} from time
k −Np + 1 to time k is considered.

I A mixed-integer programming problem is solved to
simultaneously estimate:

1. the model parameters Θi,j

2. the active mode σi(k) ∈ {1, . . . , s}
σi(k) = j∗ ⇔ δi,j∗(k) = 1

I The training data samples {xi(k), yi(k)} are processed
iteratively by shifting the horizon window.
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Stage S1: Training appliance models

At time k, we solve,

min
Θi,j , δi,j(k−t)

s∑
j=1

Np−1∑
t=0

∥∥∥(yi(k−t)−Θ>i,j

[
1

xi(k−t)

])
δi,j(k−t)

∥∥∥2
2

s.t. δi,j(k−t)∈{0, 1},
s∑
j=1

δi,j(k−t)=1, t=0, . . . , Np−1.

I Fitting error term optimized over Np horizon samples

I δi,j(k) indicates active mode at time k,

i.e., δi,j(k) = 1⇒ σi(k) = j

I Computes both model parameters Θi,j and active modes σi(k)
at k simultaneously
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Stage S1: Training appliance models

min
Θi,j , δi,j(k−t)

s∑
j=1

Np−1∑
t=0

∥∥∥(yi(k−t)−Θ>i,j

[
1

xi(k−t)

])
δi,j(k−t)

∥∥∥2
2

+

k−Np∑
t=1

∥∥∥yi(t)−Θ>i,σ(t)

[
1

xi(t)

]∥∥∥2 regularization on Θi,j

s.t. δi(k−t)∈{0, 1},
s∑
i=1

δi(k−t)=1, t=0, . . . , T−1.

I takes into account the time history, outside the considered
time window i.e. from time 1 to time k −Np

I Fixed estimates {σi(t)}
k−Np

t=1 are used, to re�ne the estimates
of the model parameters Θi,j

Mejari, Naik, Piga, Bemporad CDC 2018, Miami Beach, USA 8



Stage S1: Training appliance models

min
Θi,j , δi,j(k−t)

s∑
j=1

Np−1∑
t=0

∥∥∥(yi(k−t)−Θ>i,j

[
1

xi(k−t)

])
δi,j(k−t)

∥∥∥2
2

+

k−Np∑
t=1

∥∥∥yi(t)−Θ>i,σ(t)

[
1

xi(t)

]∥∥∥2 regularization on Θi,j

s.t. δi(k−t)∈{0, 1},
s∑
i=1

δi(k−t)=1, t=0, . . . , T−1.

I takes into account the time history, outside the considered
time window i.e. from time 1 to time k −Np

I Fixed estimates {σi(t)}
k−Np

t=1 are used, to re�ne the estimates
of the model parameters Θi,j

Mejari, Naik, Piga, Bemporad CDC 2018, Miami Beach, USA 8



Stage S1: Training appliance models

min
Θi,j , δi,j(k−t)

s∑
j=1

Np−1∑
t=0

∥∥∥(yi(k−t)−Θ>i,j

[
1

xi(k−t)

])
δi,j(k−t)

∥∥∥2
2

+

k−Np∑
t=1

∥∥∥yi(t)−Θ>i,σ(t)

[
1

xi(t)

]∥∥∥2 regularization on Θi,j

s.t. δi(k−t)∈{0, 1},
s∑
i=1

δi(k−t)=1, t=0, . . . , T−1.

I takes into account the time history, outside the considered
time window i.e. from time 1 to time k −Np

I Fixed estimates {σi(t)}
k−Np

t=1 are used, to re�ne the estimates
of the model parameters Θi,j

Mejari, Naik, Piga, Bemporad CDC 2018, Miami Beach, USA 8



Stage S1: Training appliance models

1 k −Np + 1 k N̄

Reugularization on Θi,j

(B)
Moving horizon

(A)

Mixed-Integer Problem

min
Θi,j , δi,j(k−t)

s∑
j=1

Np−1∑
t=0

∥∥∥(yi(k−t)−Θ>i,j

[
1

xi(k−t)

])
δi,j(k−t)

∥∥∥2
2

(A)

+

k−Np∑
t=1

∥∥∥yi(t)−Θ>i,σ(t)

[
1

xi(t)

]∥∥∥2
2

(B)

s.t. δi,j(k−t)∈{0, 1},
s∑
j=1

δi,j(k−t)=1, t=0, . . . , Np−1.
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Stage S1: Training appliance models

1 k −Np + 1 k N̄

Reugularization on Θi,j

(B)
Moving horizon

(A)

Mixed-Integer Problem

I Only the active mode σ(k) at time k is kept

I the Np-length time window is shifted forward to estimate the
next mode σ(k + 1) solving the MIQP problem

I the signature of the i-th appliance is captured by the
estimated model parameters Θi,j for all modes j = 1, . . . , s
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Stage S2: Energy Disaggregation

I Energy disaggregation problem reduces to determining the
operating mode δi,j(k) of each PWA-AR appliance model.

I We solve the following Binary Quadratic Program (BQP)

min
{δi,j(k)}n,si,j=1

∥∥∥∥∥∥y(k)−
n∑
i=1

s∑
j=1

Θ>i,j

[
1

x̂i(k)

]
δi,j(k)

∥∥∥∥∥∥
2

2

,

s.t. δi,j(k)∈{0, 1},
s∑
j=1

δi,j(k) = 1,
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Stage S2: Energy Disaggregation

min
{δi,j(k)}n,si,j=1

∥∥∥∥∥∥y(k)−
n∑
i=1

s∑
j=1

Θ>i,j

[
1

x̂i(k)

]
δi,j(k)
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2

2

,

s.t. δi,j(k)∈{0, 1},
s∑
j=1

δi,j(k) = 1,

I At each time instance k the BQP is solved iteratively using an
estimate x̂i(k) of the regressor obtained from the previous
iterations.

I the active operating mode j∗ of each appliance is determined
by the solution of the BQP namely

j∗ : δi,j∗(k) = 1.
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Stage S2: Energy Disaggregation
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2

,

s.t. δi,j(k)∈{0, 1},
s∑
j=1

δi,j(k) = 1,

I The power of each individual appliance is thus given by

ŷi(k) = Θ>i,j∗
[

1
x̂i(k)

]
,

which is used to construct the regressor x̂i(k + 1).
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Application to Real Data

I Test on a benchmark AMPds dataset of house located in
Canada.

I We consider the aggregate power consumption by 1) fridge; 2)
dish washer; 3) heat pump; 4) clothes dryer.

I The aggregated power is corrupted by a �ctitious white noise
e(k) ∈ N (0, σ2e ) where σe = 4 W.

I Stage S1: PWA-AR models of each appliance are tranined
using only 500 min data of the day 19.

I Stage S2: The power measurements of one month are
disaggregated by solving the binary quadratic program.
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I Stage S2: The power measurements of one month are
disaggregated by solving the binary quadratic program.
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Application to Real Data

I Stage S1: Supervised traning phase.

I PWA-AR models withs = 3 and na = 2 are estimated.

I The moving-horizon mixed-integer quadratic programming
problem is solved with horizon length Np = 5

I The average computation time is 90 ms using GUROBI.

I For comparison with PWA-AR models, we also consider static
device models for energy disaggregation:

a. fridge: [Θ1,1 Θ1,2 Θ1,3] = [0 128 200] W;
b. dish washer: [Θ2,1 Θ2,2 Θ2,3] = [0 120 800] W;
c. heat pump: [Θ3,1 Θ3,2 Θ3,3] = [0 39 1900] W;
d. clothes dryer: [Θ4,1 Θ4,2 Θ4,3] = [0 260 4700] W.
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Application to Real Data

I Stage S2: Energy Disaggregation.

I Once PWA-AR models are estimated, Binary Quadratic

Program is solved to disaggregated the power measurements
of one month.

I The average CPU time taken is 8 ms using GUROBI.

I The quality of the energy disaggregation results is assessed via:

a. Energy Fraction Index (EFI)
b. Relative Square Error (RSE) and R2 coe�cient
c. Total Energy Correctly Assigned (TECA)

Mejari, Naik, Piga, Bemporad
CDC 2018, Miami Beach, USA 14



Application to Real Data

I Stage S2: Energy Disaggregation.

I Once PWA-AR models are estimated, Binary Quadratic

Program is solved to disaggregated the power measurements
of one month.

I The average CPU time taken is 8 ms using GUROBI.

I The quality of the energy disaggregation results is assessed via:

a. Energy Fraction Index (EFI)
b. Relative Square Error (RSE) and R2 coe�cient
c. Total Energy Correctly Assigned (TECA)

Mejari, Naik, Piga, Bemporad
CDC 2018, Miami Beach, USA 14



Application to Real Data

I Stage S2: Energy Disaggregation.

I Once PWA-AR models are estimated, Binary Quadratic

Program is solved to disaggregated the power measurements
of one month.

I The average CPU time taken is 8 ms using GUROBI.

I The quality of the energy disaggregation results is assessed via:

a. Energy Fraction Index (EFI)
b. Relative Square Error (RSE) and R2 coe�cient
c. Total Energy Correctly Assigned (TECA)

Mejari, Naik, Piga, Bemporad
CDC 2018, Miami Beach, USA 14



Application to Real Data

Energy Fraction Index (EFI)

ĥi =

∑N
k=1 ŷi(k)∑n

i=1

∑N
k=1 ŷi(k)

quanti�es the estimated fraction of total energy consumed by the
i-th appliance.

PWA-AR models static models ground truth

ĥi ĥi hi
Fridge 19.6 % 14.9 % 21.3 %

Dish washer 6.8 % 11.4 % 5.1 %

Heat pump 41.6 % 42.0 % 42.3 %

Clothes dryer 31.9 % 31.6 % 31.3 %
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Application to Real Data
Relative Square Error (RSE) and R2 coe�cient

RSEi =

∑N
k=1 (yi(k)− ŷi(k))2∑N

k=1 y
2
i (k)

R2
i = 1−

∑N
k=1 (yi(k)− ŷi(k))2∑N
k=1 (yi(k)− ȳi)2

RSEi and R
2
i measure the match between the actual and the

estimated power pro�les over time.

PWA-AR models static models
RSEi R2

i RSEi R2
i

Fridge 15.5 % 76.5 % 35.9 % 45.5 %

Dish washer 12.4 % 87.3 % 38.0 % 61.4 %

Heat pump 0.6 % 99.3 % 4.0 % 95.6 %

Clothes dryer 0.1 % 99.9 % 0.3 % 99.7 %
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Application to Real Data

Total Energy Correctly Assigned (TECA)

TECA = 1−
∑N

k=1

∑n
i=1 |ŷi(k)− yi(k)|

2
∑N

k=1 y(k)
,

quanti�es the percentage of energy correctly classi�ed.

PWA-AR models static models

TECA 95.3 % 89.4 %
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Application to Energy Disaggregation
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Application to Energy Disaggregation
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Application to Energy Disaggregation
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Conclusions

I A two-stage supervised algorithm for energy disaggregation is
proposed.

I The dynamic PWA-AR modeling of the power pro�les of
individual appliances leads to better energy disaggregation
results compared to the same approach relying on static
models.

I The proposed method is computationally e�cient as the
appliance models can be estimated o�-line only once, while
energy disaggregation is performed online with low
computational complexity.
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Thank You
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