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Linear Parameter-Varying (LPV) Concept

LPV yu

p
Scheduling Signal

Linearity

I LPV paradigm: Linear dynamic relation between input and
output

I Unlike Linear Time-Invariant (LTI), the relation changes over
time according to a measurable time-varying ‘scheduling
signal’ p.
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LPV Model Identification

LPV-Input Output model:

y(k) = a0(p(k))+

na∑
j=1

aj(p(k))y(k−j)+

nb∑
j=1

aj+na(p(k))u(k−j),

I y(k), u(k) measured outputs and inputs at time k

I p(k) measured scheduling variable, values in a set P ⊆ Rnp

Objective
Given the dataset of N observations: {y(k), u(k), p(k)}Nk=1,

I Estimate the p-dependent coefficient functions aj(p(k)).
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LPV Identification as PWA regression

p

a
j
(p
)

True function
PWA map

I Proposed idea: Approximate non-linear functions aj(p(k))
with PieceWise Affine (PWA) maps
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LPV Identification as PWA regression

P1

Θ1

P2

Θ2

P3

Θ3

P4

Θ4

P5

Θ5

p

a
j
(p
)

True function
PWA map

aj(p(k)) =


Θ1,j p if p ∈ P1,...
Θs,j p if p ∈ Ps,
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LPV Identification as PWA regression

I LPV-Input Output model

y(k) = a0(p(k))+

na∑
j=1

aj(p(k))y(k−j)+

nb∑
j=1

aj+na(p(k))u(k−j),

can be written in the following PWA-LPV form:

y(k) =


Θ1 x(k) if p(k) ∈ P1,
...
Θs x(k) if p(k) ∈ Ps.

I x(k) the regressor vector

x(k) = [ 1 y′(k−1) ··· y′(k−na) u′(k−1) ··· u′(k−nb) ]
′ ⊗

[
1

p(k)

]
.

Mejari, Naik, Piga, Bemporad SYSID 2018 6



LPV Identification as PWA regression

I LPV-Input Output model

y(k) = a0(p(k))+

na∑
j=1

aj(p(k))y(k−j)+

nb∑
j=1

aj+na(p(k))u(k−j),

can be written in the following PWA-LPV form:

y(k) =


Θ1 x(k) if p(k) ∈ P1,
...
Θs x(k) if p(k) ∈ Ps.

I x(k) the regressor vector

x(k) = [ 1 y′(k−1) ··· y′(k−na) u′(k−1) ··· u′(k−nb) ]
′ ⊗

[
1

p(k)

]
.

Mejari, Naik, Piga, Bemporad SYSID 2018 6



Problem: PWA regression

y(k) =


Θ1 x(k) if p(k) ∈ P1,
...
Θs x(k) if p(k) ∈ Ps.

Estimation of the PWA-LPV model consists of:
1. selecting the number of modes s

2. estimating the model parameter matrices Θi,
3. computing the polyhedra {Pi}si=1, defining partition of

scheduling variable space
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PWA regression algorithm

The developed algorithm for PWA regression consists of the
following two stages:

Stage S1. I estimation of the model parameters Θi

I simultaneous clustering of the scheduling
variables {p(k)}Nk=1

I using regularized moving horizon regression
algorithm

Stage S2. I Computation of polyhedral partitions of the
scheduling variable space P

I using computationally efficient multi-category
linear separation methods.
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Stage S1: Regularized moving horizon identification
algorithm

I At each time sample k, a moving-horizon window of length T
containing training data samples {x(k), y(k), p(k)} from time
k − T + 1 to time k is considered.

I A mixed-integer programming problem is solved to
simultaneously estimate:

1. the model parameters Θi

2. the active mode σ(k) ∈ {1, . . . , s} which determines the
polyhedral partition Pi in which p(k) belongs to at time k, i.e.,
σ(k) = i∗ ⇒ p(k) ∈ Pi∗

I The training data samples {x(k), y(k), p(k)} are processed
iteratively by shifting the horizon window.
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Stage S1: Regularized moving horizon identification
algorithm

At time k, we solve,

min
Θi, δi(k−t)

s∑
i=1

T−1∑
t=0

∥(y(k−t)−Θix(k−t)) δi(k−t)∥2

s.t. δi(k−t)∈{0, 1},
s∑

i=1

δi(k−t)=1, t=0, . . . , T−1.

I Fitting error term optimized over T horizon samples
I δi(k) indicates active mode at time k,

i.e., δi(k) = 1 ⇒ σ(k) = i ⇒ p(k) ∈ Pi

I Computes both model parameters Θi and active modes σ(k)
at k simultaneously
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Stage S1: Regularized moving horizon identification
algorithm

min
Θi, δi(k−t)

s∑
i=1

T−1∑
t=0

∥(y(k−t)−Θix(k−t)) δi(k−t)∥2

+

k−T∑
t=1

∥∥y(t)−Θσ(t)x(t)
∥∥2 regularization on Θi

s.t. δi(k−t)∈{0, 1},
s∑

i=1

δi(k−t)=1, t=0, . . . , T−1.

I takes into account the time history, outside the considered
time window i.e. from time 1 to time k − T

I Fixed estimates {σ(t)}k−T
t=1 are used, to refine the estimates of

the model parameters Θ
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Stage S1: Regularized moving horizon identification
algorithm

min
Θi, δi(k−t)

s∑
i=1

T−1∑
t=0

∥(y(k−t)−Θix(k−t)) δi(k−t)∥2

+

k−T∑
t=1

∥∥y(t)−Θσ(t)x(t)
∥∥2 regularization on Θi

+

T−1∑
t=0

s∑
i=1

∥(p(k − t)−ci)δi(k − t)∥2 centroid distance

s.t. δi(k−t)∈{0, 1},
s∑

i=1

δi(k−t)=1, t=0, . . . , T−1.

I Clustering: penalizes the error between p(k) and centroids
{ci}si=1 of clusters Pi
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Stage S1: Regularized moving horizon identification
algorithm

1 k − T + 1 k N

Reugularization on Θi

(B)
Moving horizon

(A) & (C)

Mixed-Integer Problem

min
Θi, δi(k−t)

s∑
i=1

T−1∑
t=0

∥(y(k−t)−Θix(k−t)) δi(k−t)∥2 (A)

+

k−T∑
t=1

∥∥y(t)−Θσ(t)x(t)
∥∥2 (B)

+

T−1∑
t=0

s∑
i=1

∥(p(k − t)−ci)δi(k − t)∥2 (C)

s.t. δi(k−t)∈{0, 1},
s∑

i=1

δi(k−t)=1, t=0, . . . , T−1.
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Stage S1: Regularized moving horizon identification
algorithm

1 k − T + 1 k N

Reugularization on Θi

(B)
Moving horizon

(A) & (C)

Mixed-Integer Problem

I Only the active mode σ(k) at time k is kept
I the T -length time window is shifted forward to estimate the next

mode σ(k + 1) solving the Mixed Integer Quadratic Programming
(MIQP) problem.
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Iterative Refinement
I Initially for k ≪ N , the clustering may be inaccurate
I It affects the evaluation of mode σ(k)

I As the regularization cost on Θi also depends on the
estimated sequence {σ(t)}kt=1

I resulting estimates of model parameters Θi are inaccurate

Solution: To reduce the effect of initial classification error,
I We run the algorithm in Stage S1 multiple times (nq) for

iterative refinement by working in a batch mode
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Iterative Refinement
I this is done by further adding a regularization term

nq−1∑
q=1

λnq−q−1
N−T∑
t=1

∥∥y(t)−Θσ(t,q)x(t)
∥∥2 ,

with σ(t, q): estimate of the active mode at time t obtained
at the q-th run of moving horizon algorithm

I A forgetting factor λ ∈ R : 0 < λ ≤ 1 is also included to
exponentially downweight the estimates obtained at past runs

I For both the Regularization terms, a recursive update of the
objective function is proposed to avoid the need to store the
time history of the observations
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Summary of Stage S1

I The model parameters Θi of PWA function have been
estimated.

I Clustering of {p(k)}Nk=1 into s clusters based on estimated
mode sequence σ(k) is obtained.

I Each cluster corresponds to a polyhedral partition Pi.

I Next Step: Compute polyhedral partition of the clusters using
Linear multicategory discrimination
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Stage S2: Linear multicategory discrimination
Computation of a polyhedral partition Pi of the scheduling variable
space P is done using the PWA separator function ϕ is defined as

ϕ(p) = max
i=1,...,s

(
p′ωi − γi

)
,

P1

{ω1, γ1}

P2

{ω2, γ2}
P3

{ω3, γ3}

p

ϕ
(p
)

the polyhedra {Pi}si=1 are defined as

Pi =
{
p∈Rnp :

[
p′ −1

][
ωi−ωj

γi−γj

]
≥1, j=1, . . . , s, j ̸= i

}
.
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Stage S2: Linear multicategory discrimination

The parameters {ωi, γi}si=1 are calculated by solving the
optimization problem which is convex, (Breschi, Piga and Bemporad, 2016)

min
ωi,γi

κ

2

s∑
i=1

(
∥ωi∥22 + (γi)2

)
+

s∑
i=1

s∑
j = 1
j ̸= i

1

mi

∥∥∥∥([Mi −1mi ]
[
ωj−ωi

γj−γi

]
+ 1mi

)
+

∥∥∥∥2
2
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Numerical Examples
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Identification of SISO LPV-ARX system
Single-Input Single-Output (SISO) LPV-ARX system:

y(k) = ao
1(p(k))y(k−1)+ao

2(p(k))y(k−2)+bo
1(p(k))u(k−1)+e(k),

ao
1(p(k)) =


−0.5, if p(k) > 0.5

−p(k), if − 0.5 ≤ p(k) ≤ 0.5

0.5, if p(k) < −0.5

ao
2(p(k)) = p3(k), bo

1(p(k)) = sin(πp(k)).

with N = 6000 training data, SNR on the output channel: 20 dB.

I A PWA model with s = 6 modes is considered.
I Stage S1 is run with prediction horizon T = 6.
I Stage S2 is executed with parameter κ = 10−5
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Identification of SISO LPV-ARX system

I The resultant MIQP: 36 binary and 72 continuous variables,
144 inequality and 6 equality constraints.

I The mean time to solve: GUROBI (commercial) 0.09 sec,
GPAD-B&B 1 0.13 sec

I GPAD-B&B is simple library-free solver, yet rendered
comparable performance w.r.t GUROBI

Best Fit Rate
I BFR on noise-free validation dataset Nval = 2000 is 0.95

1accelerated dual gradient projection based branch and bound - (Naik and Bemporad, 2017)
Mejari, Naik, Piga, Bemporad SYSID 2018 21
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Estimated LPV coefficient functions
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true
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Mejari, Naik, Piga, Bemporad SYSID 2018 22



Identification of MIMO LPV-ARX system
Multi-Input Multi-Output (SISO) LPV-ARX system:[

y1(k)
y2(k)

]
=
[
ā1,1(p(k)) ā1,2(p(k))
ā2,1(p(k)) ā2,2(p(k))

] [
y1(k−1)
y2(k−1)

]
+

[
b̄1,1(p(k)) b̄1,2(p(k))

b̄2,1(p(k)) b̄2,2(p(k))

] [
u1(k−1)
u2(k−1)

]
+ e(k),

with N = 6000 training data samples,
SNR on the output channels: SNR1 = 23 dB, SNR2 = 23.5 dB.

I A PWA model with s = 10 modes is considered.
I Algorithm S1 is run with prediction horizon T = 6, nq = 2

iterations.
I Algorithm S2 is executed with parameter κ = 10−10

Mejari, Naik, Piga, Bemporad SYSID 2018 23



Identification of MIMO LPV-ARX system
Multi-Input Multi-Output (SISO) LPV-ARX system:[

y1(k)
y2(k)

]
=
[
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Identification of MIMO LPV-ARX system
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Best Fit Rates
runs(nq) BFR y1 BFR y2

1 0.8793 0.8108
2 0.8817 0.8146
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Scheduling space partition
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Conclusions

I LPV identification is recast as PieceWise Affine (PWA)
regression problem.

I A novel moving-horizon algorithm for PWA regression has
been proposed.

I Simultaneous estimation of the model parameters and of the
optimal sequence of active modes is achived.

I LPV systems can be modeled with arbitrary accuracy by the
choice of number of PWA modes.
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Thank You
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