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Motivation

* Majority of physical systems are naturally modelled in Continuous-time
(CT), parameters of CT models have physical interpretation.

* Direct identification of CT systems has multiple advantages
* numerical robustness,
* handling non-uniformly sampled data.

 Several direct CT identification methods developed for LTI model class.

* In this work, we develop direct CT identification for Linear Parameter-
Varying state-space models.



Problem Formulation

 CT LPV Data generating system:
x(t) = A(p(t))x(t) + B(p(t))u(t)
x(0) = xg

y°(t) = C(p(t))x(t) + D(p(t))u(t)
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Problem Formulation

* CT LPV Data generating system:

(1) = A(p(£))x(t) + B(p(t) u(t) Alp(t) = A+ 3 Aipi(t)
x(0) = xq \ N =1 J
y°(t) = C(p(t)x(t) + D(p(t))u(t Affine LPYV
* Objective:

Given a training dataset {u(tx), p(tx). y(tx)}i, taken at discrete time
instances, identify a continuous-time LPV state-space affine model,
such that output matches closely with y(?)



CT identification of LPV models

* We model the state and output maps with following LPV blocks
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CT identification of LPV models

* The resulting continuous-time LPV state-space model is given by

parame&ars

y(t) = My(x(t),u(t),p(t); C, D) —

* In this work, we exploit the integral form of this Cauchy problem to
identify the LPV state-space model.



Integral architecture
We define an integral LPV block
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Integral architecture
We define an integral LPV block
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Integral architecture
We define an integral LPV block

X(t)

! y & t i
u(t) : » M, (A, B) 30, > fﬁ(r)dr :
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* |f the states feeding the LPV block are actually generated by the
model, integrated states exactly matches them, i.e,,

}A((t) = )A([(t) YVt € [to tN—l}-



Fitting Criterion

The model matrices and states are jointly optimized according to a
dual objective
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Fitting Criterion

The model matrices and states are jointly optimized according to a

dual objective
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Fitting Criterion

The model matrices and states are jointly optimized according to a
dual objective
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Optimization problem

* The model matrices and states are jointly optimized by minimizing

min  J(X(}), A, B,C, D)

%x(-),A,B,C,D
N—l 'S % "~ tN_l ~ % ~
7= S50 -yl +a / &1 (r) — ()| dr,
k=0 to

* continuous-time state signal is one of the decision variables!

* the optimization problem is infinite-dimensional and intractable.



Optimization problem

* The model matrices and states are jointly optimized by minimizing

min  J(X(}), A, B,C, D)

%x(-),A,B,C,D
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* continuous-time state signal is one of the decision variables!
* the optimization problem is infinite-dimensional and intractable.

* We employ numerical techniques to transform it into finite-dimensional
problem.



Numerical techniques

* Signals are approximated using finite-dimensional parameterization,
e.g., piecewise constant

* Integrals are approximated using rectangular quadrature.

tN—1 N—-1
/ %7 (1) = %(7)|Pdr~ Y |I%r(te) — %(t)[|* Aty
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 State is approxmated with the Riemann sum:
x7(tg) / M ( (7),p(7); A, B) dr.




Numerical techniques

* Signals are approximated using finite-dimensional parameterization,
e.g., piecewise constant

* Integrals are approximated using rectangular quadrature.
N—1

tn—1
[ () = x()Pdra 3 [1(0) - x(0) P At
t k=1

0

* In general, more complex parameterizations piecewise polynomials with
other quadrature rules, trapezoidal or Gaussian can be used.



Optimization algorithm

We employ coordinate descent algorithm to solve the problem

min  J(x,A,B,C,D)
{x(tx)}p—y »A,B,C,D

1. Iterate forn =1, ...

1.1. AW B0 ¢ D)« arg min J&™ D, A, B,C,D)
A,B,C,D

1.2. %" < argmin J(%x, A, BM CM) D)
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Optimization algorithm

We employ coordinate descent algorithm to solve the problem

min  J(x,A,B,C,D)
{x(tx)}p—y »A,B,C,D

1. Iterate forn =1, ...

A

11 DA B0 M) DM arg min J(x("Y, A, B,C, D)

Least Moo A,B,C,D
Squ&‘l‘és /i—i (n) - argmm J( A(n), B(n)) C( )7ﬁ(n))

The solutions at steps 1.1 and 1.2 can be computed &Mad.v%ix:ad.bj



Numerical example
* We consider MIMO CT LPV data-generating system:

(1) = A(R()x() + BR[04 42]=| oo O]
}Z(O):XO Mool o, 11 2
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* Outputs are corrupted by white Gaussian noise,
e Signal-to-noise ratio (SNR) of {15, 25} dB are considered.



Numerical example

* We consider MIMO CT LPV data-generating system:
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* Outputs are corrupted by white Gaussian noise,
e Signal-to-noise ratio (SNR) of {15, 25} dB are considered.

* Monte-Carlo (MC) study with 50 MC runs are performed.
* Training dataset: 800 samples
 Validation dataset:500 samples is gathered.



Numerical example

* We run the proposed algorithm for 30 iterations with a random
initial guess for states.

Cost function vs iterations
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Conclusions

* We have presented an integral architecture for continuous-time
identification of LPV state-space models.

* A coordinate-descent algorithm exploiting linear-parametric structure
IS presented.

* The algorithm is computationally efficient as the solutions to the
sub-problems can be obtained in closed-form.

* Future work will be focused on extending the proposed algorithm to
other model classes.



