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Motivation

• Majority of physical systems are naturally modelled in Continuous-time
(CT), parameters of CT models have physical interpretation.

• Direct identification of CT systems has multiple advantages [Garnier et. al. 2014]:

• numerical robustness,

• handling non-uniformly sampled data.

• Several direct CT identification methods developed for LTI model class.

• In this work, we develop direct CT identification for Linear Parameter-
Varying state-space models.



Problem Formulation

• CT LPV Data generating system: 
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Problem Formulation

• CT LPV Data generating system: 

• Objective:

Given a training dataset taken at discrete time
instances, identify a continuous-time LPV state-space affine model,
such that output matches closely with
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CT identification of LPV models

• We model the state and output maps with following LPV blocks

State map Output map
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• The resulting continuous-time LPV state-space model is given by

• In this work, we exploit the integral form of this Cauchy problem to 
identify the LPV state-space model. 

CT identification of LPV models
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Integral architecture
We define an integral LPV block
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Integral architecture
We define an integral LPV block

• If the states feeding the LPV block are actually generated by the 
model, integrated states exactly matches them, i.e., 
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Fitting Criterion
The model matrices and states are jointly optimized according to a 
dual objective 
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Fitting Criterion
The model matrices and states are jointly optimized according to a 
dual objective 
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Optimization problem

• The model matrices and states are jointly optimized by minimizing

• continuous-time state signal is one of the decision variables!

• the optimization problem is infinite-dimensional and intractable.



Optimization problem

• The model matrices and states are jointly optimized by minimizing

• continuous-time state signal is one of the decision variables!

• the optimization problem is infinite-dimensional and intractable.

• We employ numerical techniques to transform it into finite-dimensional
problem.



Numerical techniques
• Signals are approximated using finite-dimensional parameterization,
e.g., piecewise constant

• Integrals are approximated using rectangular quadrature.

• State is approximated with the Riemann sum:

. 



Numerical techniques
• Signals are approximated using finite-dimensional parameterization,
e.g., piecewise constant

• Integrals are approximated using rectangular quadrature.

• In general, more complex parameterizations piecewise polynomials with
other quadrature rules, trapezoidal or Gaussian can be used.

. 



Optimization algorithm
We employ coordinate descent algorithm to solve the problem



Optimization algorithm
We employ coordinate descent algorithm to solve the problem

The solutions at steps 1.1 and 1.2 can be computed analytically

Least
Squares



Numerical example
• We consider MIMO CT LPV data-generating system:

• Outputs are corrupted by white Gaussian noise,
• Signal-to-noise ratio (SNR) of {15, 25} dB are considered.



Numerical example
• We consider MIMO CT LPV data-generating system:

• Outputs are corrupted by white Gaussian noise,
• Signal-to-noise ratio (SNR) of {15, 25} dB are considered.

• Monte-Carlo (MC) study with 50 MC runs are performed.
• Training dataset: 800 samples

• Validation dataset:500 samples is gathered.



Numerical example
• We run the proposed algorithm for 30 iterations with a random
initial guess for states.

Cost function vs iterations



Numerical example

Best Fit Rate over 50 MC runs True vs estimated output



Conclusions

• We have presented an integral architecture for continuous-time
identification of LPV state-space models.

• A coordinate-descent algorithm exploiting linear-parametric structure
is presented.

• The algorithm is computationally efficient as the solutions to the
sub-problems can be obtained in closed-form.

• Future work will be focused on extending the proposed algorithm to
other model classes.


